

MINISTERUL EDUCAȚIEI UNIVERSITATEA PETROL-GAZE DIN PLOIEȘTI

B-dul. București nr. 39, 100680 Ploiești - România www.upg-ploiesti.ro Telefon +40 244 573 171 Fax +40 244 575 847

INSTITUȚIA ORGANIZATOARE DE STUDII UNIVERSITARE DE DOCTORAT UNIVERSITATEA PETROL-GAZE DIN PLOIEȘTI DOMENIUL FUNDAMENTAL – ȘTIINȚE INGINEREȘTI DOMENIUL DE DOCTORAT – MINE, PETROL ȘI GAZE

TEZĂ DE DOCTORAT

Contribuții privind modelarea parametrilor estimați în scopul interpretării regimului termic în zonele cu potențial de hidrocarburi

Autor: ing. Georgescu Ş.C. (Jugăstreanu) Cristina Venera Maria

Conducător științific: conf. univ. habil. dr. ing. Timur-Vasile Chiș

Ploiești, anul 2022

MINISTERUL EDUCAȚIEI UNIVERSITATEA PETROL-GAZE DIN PLOIEȘTI

B-dul. București nr. 39, 100680 Ploiești - România www.upg-ploiesti.ro Telefon +40 244 573 171 Fax +40 244 575 847

INSTITUȚIA ORGANIZATOARE DE STUDII UNIVERSITARE DE DOCTORAT UNIVERSITATEA PETROL-GAZE DIN PLOIEȘTI DOMENIUL FUNDAMENTAL – ȘTIINȚE INGINEREȘTI DOMENIUL DE DOCTORAT – MINE, PETROL ȘI GAZE

TEZĂ DE DOCTORAT

Contribuții privind modelarea parametrilor estimați în scopul interpretării regimului termic în zonele cu potențial de hidrocarburi

Contributions regarding the modeling of estimated parameters for the purpose of interpreting the heat regime in hydrocarbon potential areas

Autor: ing. Georgescu Ș.C. (Jugăstreanu) Cristina Venera Maria Conducător științific: conf. univ. habil. dr. ing. Timur-Vasile Chiș Nr. Decizie 549 din 13.09.2022

Președinte	Prof. univ.habil. dr. ing. Mihai Adrian	de la	Universitatea Petrol-Gaze
	ALBULESCU		Ploiești
Conducător	Conf. univ. habil. dr. ing. Timur-Vasile	de la	Universitatea Petrol-Gaze
științific	CHIŞ		Ploiești
Referent oficial	Prof. univ. dr. ing. Lazăr AVRAM	de la	Universitatea Petrol-Gaze
			Ploiești
Referent oficial	Prof. univ. habil. dr. ing. Mihaela	de la	Universitatea din Petroșani
	TODERAȘ		
Referent oficial	Conf. univ. dr. ing. Ciprian DANCIU	de la	Universitatea din Petroșani

Comisia de doctorat:

Ploiești ____anul 2022____

CUPRINS

	Introducere	4
1.	Analiza regimului termic al zăcămintelor de petrol și gaze	9
1.1.	Date privind cercetarea regimului termic al zăcămintelor de petrol și gaze din România	9
1.2.	Măsurători de temperatură efectuate în timpul exploatării zăcămintelor petroliere	11
101		11
1.2.1.	Perturbarea regimului termic al formațiunilor geologice traversate	12
1.3.	Regimul termic al stratelor geologice de suprafața	19
1.4.	Gradientul geotermic al zăcămintelor de petrol și gaze (estimarea temperaturilor în adâncime)	21
1.4.1.	Calculul gradienților termici	21
1.4.1.1.	Calculul gradientului geotermic pe baza unei măsurători de temperatură	22
1.4.1.2.	Calculul gradientului geotermic pe baza a două măsurători de temperatură	23
1.4.1.3.	Calculul gradientului geotermic pe baza a mai multe măsurători de	
	temperatură	23
1.5.	Analiza temperaturii de zăcământ	24
1.6.	Distribuția gradienților geotermici medii in Muntenia si Oltenia	28
2.	Proprietățile termice ale zăcămintelor de petrol și gaze	31
2.1.	Coeficienții termodinamici fizici a rocilor din zăcământ	31
2.2.	Densitatea rocilor aferente zăcămintelor de petrol	33
2.3.	Noțiuni generale privind capacitatea calorică a rocilor din zăcăminte	33
2.4.	Date generale privind conductivitatea termică a rocilor constituente din cadrul zăcămintelor de petrol și gaze	37
2.5.	Estimarea conductivității termice echivalente a zăcămintelor de fluide petroliere	40
3.	Anomalii geotermice	40 47
3.1.	Surse de căldură dispuse în roci colectoare de petrol si gaze	47
3.2.	Interpretarea anomaliilor termice aferente zăcămintelor de petrol si gaze	50
3.3.	Anomalii geotermice din România	51
3.4.	Modele geotermice propuse	53
3.4.1	Modelul cu strat unic	53
3.4.2	Modelul "sulfurilor termice"	53
3.4.3	Modelul zonelor de subductie	54
	,	

3.5.	Anomaliile magnetice determinate în Platforma Moesică	54
3.5.1.	Divizarea Platformei Moesice	54
3.5.2.	Stratigrafia Platformei Moesice	60
3.6.	Anomaliile magnetice din Platforma Moldovenească și Depresiunea	
	Predobrogeană	65
3.7.	Modelarea numerică a transferului de căldură în zonele geologice cu magmă vulcanică	68
4.	Considerații privind geologia și geotermia Platformei Moesice	72
4.1.	Introducere	72
4.2.	Identificarea rocilor sursă (generatoare) de hidrocarburi	73
4.3.	Efectul câmpurilor termice asupra genezei hidrocarburilor	75
4.4.	Variația gradientului geotermic în Platforma Moesică	76
	Contribuții proprii	78
5.	Modelarea parametrilor estimați în scopul interpretării regimului termic în zonele cu potențial de hidrocarburi	79
5.1.	Scopul cercetărilor	79
5.2.	Conductivitatea termică a zăcămintelor de fluide petroliere cantonate în roci neconsolidate	79
5.3.	Conductivitatea termică a zăcămintelor de fluide petroliere cantonate în roci consolidate	80
5.4.	Estimarea valorii conductivității termice echivalente utilizând modele idealizate	82
5.5.	Estimarea valorii conductivității termice echivalente utilizând relații de corelație cu alte proprietăți ale zăcământului de petrol	83
5.6.	Studiul experimental al conductivității termică a unui zăcământ de petrol	84
5.6.1.	Analiza experimentală a conductivității termice	85
5.6.2.	Rezultate și discuții	87
5.6.2.1.	Măsurarea conductivității termice în regim tranzitoriu (nestaționar)	88
5.6.2.2.	Măsurarea conductivității termice în regim staționar	89
5.6.2.3.	Determinarea experimentală a conductivității termice a discurilor necesare izolării termice din aparatul de determinare	00
5.7.	Evaluarea conductivității termice a carotelor extrase din sondele de cercetare geologică a zonei de studiu	90 92
5.7.1.	Structura geologică Suraia	92

5.7.2.	Structura geologică Padina	93
5.7.3.	Structura geologică sud estică a Platformei Moesice	95
5.7.4.	Structura geologică Smeeni	99
5.7.5.	Structura geologică Belciugatele	101
5.7.6.	Structura geologică Slobozia	103
5.8.	Analiza conductivității termice a carotelor extrase din zonele cu acumulări	
	de gaze și țiței	103
5.9.	Relații statistice între proprietățile rocilor	105
5.10.	Analiza calitativă a conductivității termice a stratelor geologice analizate	
	funcție de datele din literatura de specialitate	107
5.11.	Evaluarea modelelor de simulare a conductivității termice	109
5.12.	Concluzii	117
6.	Analiza anomaliilor geotermice în unele foraje din Platforma Moesică	118
6.1.	Evaluarea fluxului termic	118
6.2.	Implicațiile cunoașterii fluxului termic la scară globală	119
6.3.	Evaluarea relațiilor de variație a temperaturii cu adâncimea	121
6.4.	Analiza modelelor de variație a temperaturii cu adâncimea în forajele de explorare zăcăminte de țiței și gaze asociate	126
	Concluzii și direcții de cercetare	128
A1	Estimarea temperaturilor la diferite adâncimi pe baza gradientului	
	geotermic	149
A2	Estimarea temperaturilor la diferite adâncimi pe baza gradientului geotermic – continuare	150
A3	Estimarea fluxului termic I (Muntenia)	151
A4	Estimarea fluxului termic II (Muntenia)	152
A5	Principalele roci din Platforma Moesică prezente în zăcămintele de petrol si	
	gaze	153
	Bibliografie	154
	-	

1.Introducere

Exploatarea zăcămintelor de țiței și gaze are nevoie de cunoașterea proprietăților fizicochimice ale rocilor prezente în arealele de exploatare precum și a fluidelor care circulă prin porii acestora.

Cea mai utilă proprietate a rocilor constituente a zăcămintelor de petrol și gaze este conductivitatea termică.

Acest parametru ne oferă date despre:

-Viteza de curgere a fluidelor prin porii rocilor,

-Tipul de curgere care poate avea loc prin acești pori,

-Tehnica de exploatare optimă, aplicabilă extracției de fluide petroliere,

-Posibilitatea de utilizare a metodelor termice, necesare pentru recuperare secundară și terțiară a țițeiului.

Totodată, analizând Harta Geologică a României (Figura 1, Figura 2, Figura 3), se observă prezența unor zăcăminte de țiței amplasate în zone cu anomalii geotermice importante.

Figura 1. Harta geotermică a României (Demetrescu, 1976)

Figura 2. Harta geologică a României (după Ionesi, L, 1994)

Acesta este motivul pentru care am ales, ca obiectiv al tezei de doctorat modelarea parametrilor estimați (conductivitatea termică a rocilor colectoare), în scopul interpretării regimului termic al zonelor cu potențial de depozitare a hidrocarburilor.

Prima parte a lucrării identifică și subliniază principalele date cu privire la fenomenul geotermic, a modalității sale de manifestare și a legăturii dintre manifestarea geotermică și îndeplinirea celor 5 condiții de formare a zăcămintelor de petrol și de gaze.: 1) existența rocilor mame (generatoare) de hidrocarburi; 2) posibilitățile de migrare a hidrocarburilor de la roca mamă la roca rezervor (magazin); 3) existența rocilor rezervor, care să aibă capacitatea de acumulare a hidrocarburilor; 4) existența rocilor protectoare care determină și protejează închiderea acumulărilor de petrol sau de gaze în cuprinsul rezervoarelor; 5) existența unui aranjament structural (tectonic), stratigrafie sau litologic, care să mențină hidrocarburile lichide sau gazoase într-un echilibru stabil.

În **primul capitol** a fost analizat regimul termic al zăcămintelor de petrol și gaze din România, fapt care a condus la interpretarea faptului că, temperatura formațiunilor geologice crește cu creșterea adâncimii în mod diferit (funcție de zonele cu anomalii termice existente și de constituenții arealului analizat). Caracterizarea zonelor geologice care prezintă anomalii termice s-a realizat și se analizează cu ajutorul parametrilor termici ai zăcămintelor de petrol, gaze și resurse utile și anume **conductivitate termică**, **fluxul geotermic** și **gradientul geotermic**.

Referitor la cele trei proprietăți termice ale zăcămintelor studiate, am prezentat în lucrare istoria cercetărilor în acest domeniu, precum și tehnicile de estimare a acestora, în timpul analizei geofizice și geologice a zăcămintelor de petrol și gaze.

România are o bogată activitate științifică în analiza câmpurilor termice, din zonele geologice unde se află zăcăminte de petrol și gaze, dar modelarea numerică a acestor câmpuri s-a efectuat doar în scopuri didactice, fără a fi utilizate modele numerice complexe, pentru interpretarea proprietăților, necesare extracției substanțelor minerale utile.

Tocmai de aceea această lucrare, prezintă, pentru prima oară în literatura de specialitate, relația dintre distribuția câmpului geotermic și răspunsul geofizic al zăcămintelor de petrol și gaze analizate.

De asemenea analiza forajelor realizate în zona de analiză a tezei de doctorat (Platforma Moesică), a dus la concluzia că temperatura formațiunilor geologice, crește proporțional cu adâncimea, gradientul câmpului de temperatură fiind foarte variat (pleacă de la creșterea cu 1°C, la fiecare 10 m adâncime, până la 11°C în cazul zonelor constituite din roci cu conductibilitate termică mare).

La sfârșitul **capitolului I** am prezentat distribuția gradienților termicii, medii, în Muntenia și Oltenia.

Capitolul al II-lea analizează coeficienții termodinamici fizici ai rocilor de zăcământ, (dilatarea volumică a rocilor constituente și compresibilitatea termică a acestora).

Alt parametru studiat în această lucrare îl reprezintă capacitatea calorică a zăcămintelor.

Acestă proprietate a zăcămintelor se definește ca fiind o proprietate constituită din capacitățile calorice ale rocii precum și ale fluidelor constituente și anume ale țițeiului, apei și gazelor.

De menționat că, în calculul capacității calorice, trebuie să ținem seama și de porozitatea rocilor colectoare și de saturațiile în fluidele constituente (prezente sau nu în circulație dinamică).

Am analizat, tabelat și centralizat proprietățile termice ale unor roci colectoare funcție de timpul de formare (Terțiar, Cretacic, Jurasic, Triasic, Permian și Carbonifer).

Un subcapitol a analizat conductivitatea termică, proprietate care poate determina metoda optimă de recuperare secundară și terțiară a fluidelor petroliere.

Al III-lea capitol definește, identifică și clasifică anomaliile geotermice, exemplificându-le pe cele din țara noastră.

Anomaliile geotermice (zone geotermale) sunt zone cu fluxuri termice mai mari sau mai mici decât zonele învecinate.

Aceste anomalii, care se suprapun peste zonele cu flux termic normal, sunt specifice secțiunii geologice din care fac parte și reprezintă, în mare parte, un potențial energetic de natură termică suplimentar, ceea ce a făcut ca aceste anomalii să fie studiate pentru producția de energie regenerabilă.

Anomaliile termice au fost clasificate ca fiind de tipul continental, sub-continental, regional și local.

În România sunt prezente anomalii geotermice regionale.

Capitolul al IV-lea analizează geologia și geotermia zăcămintelor de petrol și gaze din cadrul Platformei Moesice.

Platforma Moesică, unul dintre cele mai puternice bazine petrolifere, și-a demonstrat potențialul productiv în jurul anilor 1950, prin descoperirea primului zăcământ și anume cel de la Ciurești.

Din acel moment, activitatea de prospecțiune și exploatare s-a desfășurat cu o intensitate deosebită, ceea ce a permis ca numărul acumulărilor de petrol și gaze să ajungă la peste 160.

Zăcămintele de hidrocarburi sunt localizate în Devonian, Triasicul inferior, Triasicul mediu, Triasicul superior, Liasic superior-Dogger, Malm, Neocomian, Albian, Senonian, Tortonian, Sarmațian, Meoțian, Ponțian și în Dacian.

Este un interval stratigrafic foarte bine dezvoltat, care subliniază faptul că, în evoluția ei, Platforma Moesică a beneficiat, aproape tot timpul, de condiții favorabile genezei, acumulării și conservării hidrocarburilor.

Analiza rocilor colectoare și a rocilor mamă a demonstrat că geneza țițeiului și a gazelor asociate a beneficiat de influența câmpurilor (anomaliilor) geotermice.

Hidrocarburile lichide iau naștere în condițiile unor temperaturi care pot varia, în general între 60 și 140 °C.

În cazul unor valori mai mici de 50°-60°C, materia organică se află încă sub influența predominantă a proceselor biochimice, generatoare practic numai de constituenți ușori (C_1 - C_4).

Temperaturile mai mari de 120°-140°C determină descompunerea (cracarea) hidrocarburilor lichide, rezultând fracțiuni gazoase, din ce în ce mai ușoare. (D. Paraschiv, 1979)

Partea a II-a a lucrării prezintă contribuțiile proprii ale acestei teze de doctorat, **capitolul V**, analizând modele necesare interpretării parametrilor estimați, în scopul determinării regimului termic în zonele cu potențial de hidrocarburi.

Astfel, pentru prima oară în literatura de specialitate, a fost analizată conductivitatea termică a rocilor colectoare, funcție de porozitate și de natura fluidului care saturează porii rocii.

Capitolul VI analizează anomaliile geotermice din Platforma Moesică și Platforma Moldovenească creând ecuații de modelare a câmpului termic față de cercetările geofizice.

În finalul lucrării am prezentat Concluziile și direcțiile de cercetare care se desprind ca urmare a elaborării acestei teze de doctorat.

În această lucrare s-a încercat deslușirea următoarelor:

a.Modelarea câmpurilor termice,

b.Estimarea parametrilor regimului termic,

c.Influența anomaliilor termice asupra rocilor colectoare de petrol,

d.Analiza răspunsului rocilor la evaluarea gradienților termici și rezistivi.

Teza de doctorat conține 6 capitole cuprinse în 165 de pagini.

2.Modelarea parametrilor estimați în scopul interpretării regimului termic în zonele cu potențial de hidrocarburi

2.1. Scopul cercetărilor

Aplicarea unui tratament termic pentru creșterea factorului de recuperare al țițeiului și gazelor asociate și mai ales pentru determinarea unor noi zăcăminte de substanțe utile face ca proprietățile rocilor colectoare și a carotelor extrase în timpul forajelor de cercetare geologică (porozitatea, densitatea sau saturația fluidului care saturează porii rocii) să fie ușor determinabile prin aplicarea metodelor de detectare și simulare geofizică.

Conductivitatea termică este mai greu de determinat prin cercetări geofizice, fiind utilizate modele de simulare și aproximare a acestor valori. Ca urmare, se preferă determinarea în laborator a conductivității termice a rocilor constituente a zăcămintelor de substanțe utile și a fluidelor asociate.

În analiza efectuată în cadrul acestei teze de doctorat s-a încercat găsirea unei ecuații de corelare între conductivitatea termică și proprietățile fizice ale rocilor din zăcămintele de fluide petroliere.

De asemenea s-a încercat determinarea anomaliilor de comportare a gradientului termic în zonele cu rezerve detectabile de gaze și condensat în perspectiva optimizării exploatării pentru hidrocarburi.

2.2. Conductivitatea termică a zăcămintelor de fluide petroliere cantonate în roci neconsolidate

În cazul zăcămintelor cantonate în roci neconsolidate (nisipuri cuarțitice saturate cu apă și țiței) s-a stabilit o expresie de calcul a conductivității termice (Cristescu,T.,2006):

$$A_z = 1,272 - 2,25\Phi + 0,39\lambda_s \cdot \sqrt{S_a}$$
(1)

Conductivitatea termică se consideră a fi valabilă pentru o temperatură de maximum la 52° C.

De asemenea s-a introdus în calcul și cantitatea de cuarț (un cristal foarte bun conducător de căldură) din roca analizată (r_c):

 $\lambda_s = 7,7r_c + 2,85(1 - r_c)$

Relația (1) este utilizată pentru porozități cuprinse în intervalul $\Phi = 0,28 - 0,37$.

Relația (2) este recomandată pentru calculul conductivității termice a mediului solid, termenul 7,7, fiind, în speță, conductivitatea termică a cristalului de cuarț.

Conductivitatea termică a rocilor sedimentare este în jur de 2,1 W/mK (Cristescu,T.,1998) și funcție de vârsta geologică, intervalul de variație a acestei valorii este situat între 1 și 3,8 W/mK.

Există și studii care au demostrat că pentru λ_s pot exista valori calculate de 4,76 W/mK sau 4,45 W/mK, când procentul de cuarț din roci este ridicat.

Estimarea conductivității termice a nisipurilor neconsolidate, saturate cu aer, se poate realiza cu primii doi termeni ai ecuației (1) și anume $(1,272 - 2,25\Phi)$.

Krupiczka a demostrat că în cazul nisipurilor neconsolidate, se poate defini o constantă $A^{"}$ (relația (3)), care să estimeze conductivitatea nisipurilor saturate cu aer:

 $A^{"} = 0,362 - 0,65 \log \Phi$

(3)

Prin introducerea relației 3 în 1 s-a putut determina conductivitatea zăcămintelor de petrol și gaze asociate, aceasta fiind dată de ecuația:

$$\lambda_z = \lambda_f \left(\frac{\lambda_s}{\lambda_f}\right)^{A'' + B' \log \frac{\lambda_s}{\lambda_f}} + 0,39\lambda_s \sqrt{S_a}$$
(4)

Simularea în laborator a curgerii fluidelor petroliere prin nisipuri neconsolidate a dus la determinarea conductivității termice cu ajutorul relației (4), în cazul unui interval de porozitate de 0,28-0,46.

Variația conductivității termice a zăcămintelor de fluide petroliere, funcție de temperatura din zăcământ, se poate determina cu relația:

$$\lambda_{z,T} = \lambda_z - 2,304 \cdot 10^{-3} (T - 325) (\lambda_z - 1,42)$$
(5)

2.3. Conductivitatea termică a zăcămintelor de fluide petroliere cantonate în roci consolidate

(2)

E necesară precizarea noțiunii de rocă consolidată: nu este vorba de calcare, roci magmatice, roci metamorfice, pot fi gresii cu grad ridicat de cimentare.

Conductivitatea termică a gresilor cu un grad ridicat de cimentare (Anand, J., Somerton, W.H., Gomaa, E., 1973), aflate la $t = 20^{0}$ C, se poate determina cu relația:

$$\lambda_{z,u} = 0.588 \cdot 10^{-3} \rho_s - 5.538\Phi + 0.917k^{0,1} + 0.0225F - 0.054 \tag{6}$$

Expresia (6) a fost obținută prin analiza statistică a datelor obținute pe un număr de carote extrase din roci consolidate din unele zăcăminte de petrol și gaze asociate, deviația medie fiind 0,24 W/mK, când $\lambda_{z,u}$ are valori cuprinse între 0,692 și 3,808 W/mK (Albu, M.,1984).

În relația (6) s-a introdus un factor de stabilitate (consolidare) a rocilor, acesta fiind exprimat prin relația:

$$F = \frac{0.75}{\Phi^2}$$
(7)

pentru formațiunile geologice studiate care au porozitate
a \varPhi mai mare de 0,15 sau:

$$F = \frac{1}{\phi^2} \tag{8}$$

când porozitate
a \varPhi este mai mică sau egală cu valoarea de 0,15.

Dacă se ține seama seama de relația (7), relația (8) devine:

$$\lambda_{z,u} = 0.558 \cdot 10^{-3} \rho_s - 5.538\Phi + 0.917 \cdot k^{0,1} + \frac{0.0169}{\Phi^2} - 0.054$$
(9)

În cazul în care gresiile consolidate sunt saturate cu un lichid, aflat la la o temperatură de 20°C, pentru calculul conductivității termice s-a propus relația:

$$\frac{\lambda_{z,l}}{\lambda_{z,u}} = 1 + 0.3 \left(\frac{\lambda_l}{\lambda_{aer}} - 1\right)^{0.33} + 4.57 \left[\left(\frac{\Phi}{1-\Phi}\right) \cdot \left(\frac{\lambda_l}{\lambda_{z,u}}\right)\right]^{0.48m} \cdot \left(\frac{\rho_{z,l}}{\rho_s}\right)^{-4.3}$$
(10)

În ecuația (10) s-a utilizat un factor de cimentare al lui Archie notat cu m'.

Și în cazul rocilor consolidate s-au efectuat studii statistice privind corelarea conductivității termice obținute prin calcul cu cea determinată în laborator, rezultatele ducând la o deviație de maximum 0,179, atunci când raportul dintre conductivitatea zăcământului și cea a lichidului din roci are valorile cuprinse în intervalul de mai jos.

$$\frac{\lambda_{z,1}}{\lambda_{z,u}} \in (1,2-2,3)$$

Și în cazul rocilor consolidate, efectul presiunii asupra conductivității este foarte redus (la o creștere a presiunii de pînă la 69 atm. conductivitatea crește cu maximum 2 procente).

De asemenea conductivitatea zăcământului analizat variază cu modificarea temperaturii acestuia, relația de variație fiind următoarea:

$$\lambda_{z,l_T} = \lambda_{z,l} - 0.738 \cdot 10^{-3} (\lambda_{z,l} - 1.38) \cdot (T - 293) \cdot [\lambda_{z,l} (1.8T \cdot 10^{-3})^{-0.318\lambda_{z,l}} + 1.28]$$
(11)

Estimarea influenței creșterii presiunii asupra conductivității termice a putut fi determinată prin utilizarea relației:

$$\frac{\lambda_{z,u}}{\Delta p} = 0,251 \cdot 10^{-8} \cdot \left[P_1 \cdot 10^{-3} \cdot \rho_{z,u} \cdot \Phi + P_2 \Phi - P_3 k^{0,1} + P_4 F \right]$$
(12)

Relația anterioara cuprinde patru coeficienți care descriu factorul de compresibilitate a rocilor, P_1 , P_2 , P_3 și P_4 , valorile acestora fiind prezentate în tabelul 1.

Tabel 1. Coeficienții necesari pentru relația (12).				
Compresibilitate	P_1	P_2	<i>P</i> ₃	P_4
Mare	0,51	5,75	0,37	0,12
Medie	0,25	3,51	0,18	0,07
Mică	0,13	1,44	0,09	0,034

Prats a propus în lucrarea *Thermal Recovery*, (Prats, M,, 1986), utilizarea unei relații care să descrie efectul conductivității termice a unui zăcământ saturat cu apă sărată, $\lambda_{z,a}$ și anume:

$$\lambda_{z} = \lambda_{z,a} \left(\frac{\lambda_{t}}{\lambda_{z,a}}\right)^{\phi S_{t}} \cdot \left(\frac{\lambda_{g}}{\lambda_{z,a}}\right)$$
(13)

2.4. Estimarea valorii conductivității termice echivalente utilizând modele idealizate

Dacă se acceptă că un zăcământ de petrol este astfel alcătuit încât sunt îndeplinite condițiile privind:

-dispunerea fazelor,

-geometria solidului,

-direcția fluxului termic,

-alte ipoteze, precizate în cadrul fiecărui model,

-porozitatea și conductivitățile termice ale mediului solid și cel fluid, care alcătuiesc formațiunea, sunt cunoscute, conductivitatea termică echivalentă poate fi determinată aplicând relațiile de calcul corespunzătoare celor opt modele idealizate (prezentate în capitolul 2)

S-a studiat variația acestei proprietăți termice funcție de porozitate și de natura fluidului care saturează porii rocii.

În cazurile analizate, mediul solid s-a considerat a fi argilă și nisip, având conductivitatea termică λ_s =2,1 W/mK.

Porozitatea variază de la 0 la 100%.

Pentru fiecare din cele opt modele idealizate, funcție de natura mediului fluid, având în vedere scopul studiului, s-au cercetat patru variante.

De asemenea s-a luat ca și mediu mobil pentru analiza conductivității solid-mediu fluid, următoarele fluide:

A) Aerul, aflat la p = 1 atm și $t = 50^{\circ}$ C, deci conductivitatea termică a fluidului este

 $\lambda_f = 0,028$ W/mK, saturează 100% porii rocii;

B) Apa, având parametrii de stare p=1atm și $t=50^{\circ}$ C, ceea ce înseamnă o conductivitate termică a fluidului $\lambda_f=0,66$ W/mK, satureză 100% porii rocii;

C) Țițeiul cu ρ_4^{20} =0,946, aflat la 50[°]C, λ_f = 0,12 W/mK, saturează 100% porii rocii;

D) Amestec de țiței și apă, fiecare având saturația 50%, la temperatura t= 50° C,

 $\lambda_t=0,12$ W/mK, $\lambda_a=0,66$ W/mK, deci $\lambda_t=0,39$ W/mK

Din rezultatele numerice obținute, pentru fiecare din cele patru situații studiate, în cadrul fiecărui model, se observă că:

-în cazul creșterii porozității, conductivitatea termică a zăcământului de fluide petroliere analizat scade. Acest fenomen se datorează scăderii conductivității termice a rocilor sedimentare, comparativ cu conductivitatea fluidelor cantonate în aceste roci.

-probe cu compoziție solidă și porozitate identice au valori diferite ale conductivității termice, funcție de conductivitatea termică a fluidului care saturează porii rocii.

Dintre modelele idealizate, cel mai utilizat este cel al **mediei geometrice ponderate**, care este simplu de aplicat și dă rezultate cuprinse între cele maxime (calculate considerând modelul paralel) și cele minime (corespunzătoare celui serie).

2.5. Estimarea valorii conductivității termice echivalente utilizând relații de corelație cu alte proprietăți ale zăcământului de petrol

La un zăcământ de petrol, proprietăți ca porozitate, permeabilitate și densitate sunt mai ușor măsurabile decât conductivitatea termică.

Pe baza relațiilor de calcul destinate determinării proprietăților termice ale zăcământului de petrol (Cristescu,T., 1998, 2004) și a datelor referitoare la câteva astfel de formațiuni din România, s-a realizat o metodă de calcul a conductivității termice echivalente.

S-a considerat că zăcămintele sunt alcătuite din roci consolidate, iar datele specifice sunt cele dinaintea aplicării unei metode termice de recuperare.

Se observă cum conductivitatea termică, echivalentă a mediului poros saturat cu fluide, crește când conductivitatea termică a mediului solid crește (Anastasiu, N., 2002).

Mediul solid al zăcământului de petrol este roca colectoare.

Conductivitatea termică a mediului solid (roca colectoare) depinde de compoziția acestuia și de conductivitatea termică a fiecărui component în parte.

În urma experimentelor de laborator s-a constatat că, conductivitatea termică a rocilor sedimentare este mai mare decât cea a fluidelor care sunt prezente în porii rocilor analizate și aceasta scade cu creșterea temperaturii.

De asemenea, saturația în lichide (apă, țiței) și gaze a zăcământului de petrol influențează conductivitatea termică a acestuia.

2.6. Studiul experimental al conductivității termice a unui zăcământ de petrol

Zăcământul de petrol reprezintă un mediu poros saturat cu fluide.

Compoziția extrem de complicată și variată a unui zăcământ de hidrocarburi, precum și condițiile în care se află cantonat acesta sunt motivele pentru care proprietățile fizice au valori specifice pentru fiecare caz în parte.

Existența pe Terra a unor mari acumulări de țiței greu și / sau vâscos, de șisturi și nisipuri bituminoase, ca și faptul că, după aplicarea metodelor clasice de exploatare, rămân în zăcământ 60-70% din rezerva geologică, pe de o parte, iar pe de altă parte menținerea locului predominant al hidrocarburilor, ca resursă, în energetica mondială sunt factorii care au captat interesul privind aplicarea metodelor termice de exploatare a petrolului.

Acestea sunt injecția de fluide calde, combustia subterană și combinații ale acestora.

Cunoașterea conductivității termice este utilă:

a.La proiectarea tehnicilor de exploatare a zăcămintelor de petrol vâscoase sau congelabile,

b.În vederea creșterii factorului de recuperare,

c.Pentru determinarea unor zone geologice cu potențial comercial de exploatare a substanțelor de minerale utile, plecând de la unele valori ale proprietăților zăcămintelor determinate prin geofizică de zăcământ.

Conductivitatea termică echivalentă a unui zăcământ de petrol poate fi estimată prin calcul, fie prin aplicarea unor modele idealizate, fie exprimând această proprietate de transfer termic funcție de alte proprietăți ale zăcământului (densitate, porozitate, permeabilitate).

Folosind date apropiate zăcămintelor de petrol, se pot obține valori ale conductivității termice echivalente (Frunzescu, D., Brănoiu, Gh., 2003).

Cercetările experimentale s-au întreprins pentru a măsura conductivitatea termică echivalentă pentru rocă și fluidele de zăcământ.

Astfel, se poate evidenția efectul unor factori precum compoziția masică a rocii și natura fluidului care saturează porii rocii și se pot propune modele de calcul care să ducă la rezultate concordante cu măsurătorile.

2.6.1. Analiza experimentală a conductivității termice

Măsurarea conductivității termice a corpurilor solide nemetalice, în regim staționar, se determină din expresia legii lui Fourier, urmărindu-se ca, după atingerea regimului staționar, să se asigure constanța fluxului termic transmis prin materialul de probă și a temperaturilor la care se găsesc suprafețele acestuia (prin care are loc schimbul de căldură).

Drept surse de căldură se utilizează, în general, rezistențe electrice, iar temperaturile pe suprafețele exterioare ale probelor se măsoară cu termocupluri de dimensiuni mici, uniform distribuite pe acestea.

În publicațiile de specialitate sunt descrise diferite metode și dispozitive de determinare a conductivității termice a materialelor solide (Albu, M., 1984, Coroian-Stoicescu, M., 2000, Cristescu, T., 1998, Cristescu, T., 2009).

Dintre acestea, după forma pe care o au epruvetele supuse încercării, se deosebesc *metoda plăcii, a tubului cilindric și cea sferică.*

Prin metoda plăcii se determină conductivitatea termică a unui material sub formă de plăci perfect plane și paralele, de suprafață A și grosime h, străbătute de un flux termic \dot{Q} , la o diferență de temperatură $\Delta t = t_1 - t_2$

$$A = \frac{Qh}{A(t_1 - t_2)} \tag{14}$$

În **Figura 4** este prezentat un dispozitiv pentru determinarea conductivității termice prin metoda plăcii, cu o singură epruvetă.

Fluxul de căldură, reprezentat de puterea electrică consumată de rezistențele 4, se citește la un wattmetru intercalat în circuitul de alimentare al acestora.

Fluxul termic, transmis prin epruveta 1, este preluat de circuitul de apă 7 a cărei termostatare asigură uniformitatea temperaturilor pe suprafețele laterale ale probei, temperaturi măsurate prin termocuplurile 2.

Pe lângă izolația termică 6 a întregului dispozitiv, fețele laterale ale plăcilor de probă se protejează cu inelele de gardă 3, executate din materialul de probă, sub forma de corpuri inelare; prin încălzirea cu rezistențele electrice 5, inelele de gardă se mențin spre interior, la temperatură aproximativ egală cu temperatura medie a fețelor laterale ale pieselor protejate (Cristescu,T.,2006, Jugăstreanu C., Tabatabai, S.M., Chis T., 2022-2).

Figura 4. Dispozitiv pentru determinarea conductivității termice prin metoda plăcii, cu o singură epruvetă (Jugăstreanu C., Tabatabai S.M., Chis T.,2022-2)

1 - placă de probă; 2 - termocupluri; 3 - inel de gardă; 4 - rezistență electrică; 5 - rezistența electrică a inelului de gardă; 6 - izolație termică; 7 - răcitor cu apă; 8 - placă de compensație; 9 - rezistența electrică a plăcii de compensație

Pentru a se măsura conductivitatea termică a acestor preparate s-au confecționat capsule, în care s-au introdus amestecurile de solide și lichide.

Capsulele au fost cilindri din textolit, cu diametrele 32,4/42 mm și înălțimea 24,5 mm, cu capace metalice, prinse prin filetare.

Capacele au diametrele 42/44 mm și grosimea 1,5 mm.

Conductivitatea termică a materialelor capacelor este 40 W/mK și, ca urmare, rezistența termică a acestora, la transferul de căldură prin conducție, este foarte mică.

De asemenea, pereții laterali din textolit au fost izolați termic suplimentar pentru diminuarea fluxului termic disipat prin pereții laterali, spre mediul exterior.

Pentru efectuarea unor astfel de determinări, s-au analizat posibilitățile existente într-o serie de laboratoare dar, lucrul cu țiței, care la creșterea temperaturii curge sau chiar începe să ardă, precum și o anumită geometrie a epruvetelor, impusă de aparatura respectivă, au limitat variantele de abordare.

Măsurătorile s-au efectuat în laboratorul de Geofizică de sondă, din cadrul Universității București.

Capsulele de textolit, descrise mai înainte, au fost concepute și realizate astfel încât forma și dimensiunile acestora să corespundă celor impuse de aparatul de măsurare a conductivității.

De asemenea, materialele se prezentau sub forma unor paste, pentru care conductivitatea termică nu putea fi măsurată, dacă nu se puneau în suporturile descrise.

De altfel, în timpul măsurării conductivității termice, la creșterea temperaturii, țițeiul și apa au început să curgă din capsule, ceea ce a creat dificultăți.

Un alt set de probe au fost carotele.

Carotele provin din unele sonde de cercetare geologică.

Măsurătorile de conductivitate pentru probele din carote au fost efectuate în laboratorul de Geotermie din cadrul Institutului Geologic Român.

Conductivitatea termică a unor probe care conțineau fluide de zăcământ (țiței, apă, gaze) nu a putut fi măsurată deoarece, sub efectul termic, acestea au început să fumege.

În cazul altor probe, conductivitatea termică s-a determinat pentru matricea solidă, după ce urmele de țiței s-au vaporizat.

La măsurarea conductivității termice, în urma studiului și calculelor privind rezistențele termice care apar în procesul de transfer de căldură prin conducție și a comparației datelor obținute, cu cele specifice din lucrările (Anastasiu, N., 2002, Coroian-Stoicescu, M., 2000) se apreciază că eroarea este de 10 %.

În cazul probelor preparate în laborator, eroarea este cauzată în principal de rezistențele termice de contact între epruvetă și plăcile aparatului, de căldura disipată spre mediul exterior și rezistențele termice ale capacelor metalice ale capsulelor.

2.6.2. Rezultate

Cunoașterea conductivității termice a rocilor este importantă, pentru:

a. Stabilirea procedelor de lucru necesare creșterii factorului de recuperare a țițeiului și gazelor din zăcămintele de petrol și gaze asociate,

b.Identificarea tehnicilor necesare pentru asigurarea unei fluidități a țițeiurilor vâscoase și congelabile,

c.Crearea unei baze de date a proprietăților rocilor, în vederea identificării capacității de extracție sau a volumului zăcământului, funcție de determinările geofizice.

Conductivitatea termică condiționează distribuția căldurii în scoarța Pământului prin fenomenul de transmisie conductivă.

De asemenea, studierea discontinuităților scoarță-manta și explicarea distribuției temperaturilor în interiorul Pământului și a fluxului geotermic, este o altă proprietate a conductivității.

Saturația și conductivitatea termică a fluidelor influențează conductivitatea termică echivalentă a zăcământului de petrol.

Se observă că probe cu compoziție solidă identică au valori diferite ale conductivității termice, funcție de natura fluidului pe care îl conțin.

De asemenea, s-au efectuat calcule pentru determinarea conductivității termice echivalente, aplicând relația:

$$\lambda_z = 1,272 - 2,25\Phi + 0,39\lambda_s \cdot \sqrt{S_a}$$
(15)

Această relație este recomandată în cazul rocilor neconsolidate, cu porozitate 28-37%.

Rezultă că, pentru roci neconsolidate, poate fi utilizată relația (15) pentru estimarea conductivității termice echivalente.

2.6.2.1. Măsurarea conductivității termice în regim tranzitoriu (nestaționar)

Metodele de măsurare în regim tranzitoriu $(\frac{\partial t}{\partial \tau} \neq 0)$, pot fi realizate în practică în multiple variante.

În unele variante, o probă cilindrică cu o temperatură inițială uniformă, este încălzită constant printr-o sursă-linie și se înregistrează creșterea de temperatură în timp.

Creșterea temperaturii într-un punct al unei probe încălzite (printr-o sursă-linie), se poate scrie astfel:

$$t = \frac{Q}{2\pi K} I(\frac{r}{2\sqrt{a\tau}}) \tag{16}$$

unde:

-Q, este cantitatea de căldură pe unitate de lungime a sursei,

-r este distanța radială a punctului de măsură de la sursă-linie,

 $-\tau$ este timpul care a trecut de la începutul încălzirii,

$$I(x) = e - \ln x + \frac{x^2}{2} - \frac{x^4}{8} \dots$$
(17)

unde:

-e este constanta lui Euler = 0,5772.

Dacă $x = \frac{r}{2}\sqrt{a\tau}$ este mic, adică atunci când τ este mare și *r* mic, termenii în x^2 și puteri mai mari pot fi neglijați astfel că ecuația (16) se poate scrie:

$$t = \frac{Q}{2\pi K} \left[e - \ln(\frac{r}{2\sqrt{a\tau}}) \right]$$
(18)

Pentru doi timpi de măsură τ_1 și τ_2 , creșterea de temperatură va fi:

$$\Delta t = t_2 - t_2 = \frac{Q}{4\pi K} ln \frac{\tau_2}{\tau_1}$$
(19)

Deci conductivitatea termică K poate fi evaluată din panta dreptei $\frac{Q}{4\pi K}$.

$$\Delta t = f(ln\tau) \tag{20}$$

Metodele de lucru în regim tranzitoriu se caracterizează prin rapiditatea măsurătorilor, precizia bună, chiar și în condițiile rocilor saturate cu hidrocarburi și apă, nu se produc deplasări de fluide în spațiul poros, respectiv distribuții neuniforme ale fluidului de saturație.

Aceste metode se utilizează pentru determinarea conductivității termice a rocilor neconsolidate (a sedimentelor de pe fundul oceanelor).

2.6.2.2. Măsurarea conductivității termice în regim staționar

În acest caz $\frac{\partial t}{\partial \tau} = 0$ și principiul metodei constă în măsurarea temperaturii unei bare divizate constând din două discuri din policarbonat ca material de referință cu conductivitate termică cunoscută și proba analizată.

Figura 5. Schema principială pentru determinarea conductivității termice

După un timp suficient pentru a atinge echilibrul termic, presupunând că fluxul termic este axial și nu există pierderi radiale semnificative între discuri:

$$Q_2 \cong Q_1 \tag{21}$$

$$Q_2 \cong Q_3 \tag{22}$$

Adunând relațiile de mai sus (21) și (22), obținem:

$$2Q_2 \cong Q_1 + Q_3 \tag{23}$$

Deci fluxul de căldură, prin proba de rocă, se poate lua ca semisuma fluxurilor Q_1 și Q_3 $Q_2 \cong \frac{Q_1 + Q_3}{2}$ (24)

$$k_r \frac{\Delta t_2}{z_2} S_2 = \frac{k_t \frac{\Delta t_1}{z_1} S_1 + k_t \frac{\Delta t_3}{z_3} S_3}{2}$$
unde:
(25)

 $-k_r$ este conductivitatea termică a probei de rocă cu secțiunea transversală S₂ și grosimea z₂, (mcal/[°]C cms),

 $-k_t$ este conductivitatea termică a textolitului cu secțiunea transversală S_1, S_3 și grosimea z_1, z_3 , (mcal/°C cms),

Deci conductibilitatea termică este:

$$k_r = \frac{k_t \frac{\Delta t_1}{z_1} S_1 + k_t \frac{\Delta t_3}{z_3} S_3}{2 \frac{\Delta t_2}{z_2} S_2} \tag{26}$$

2.6.2.3. Determinarea experimentală a conductivității termice a discurilor necesare izolării termice din aparatul de determinare

Pentru izolarea rocilor supuse tranferului termic s-a utilizat policarbonat.

La începutul experimentelor am măsurat pentru diverse temperaturi conductivitatea termică a acestuia.

Datele sunt redate în Tabel 2 și Figura 6.

Ecuația de variație a conductivității termice a policarbonatului față de temperatură este: y = 0,001x + 0,1295 (27)

unde:

-y reprezintă valoarea conductivității termice, mcal/°C cms,

-x este temperatura de determinare, $^{\circ}C$.

Analiza conductivității termice a carotelor prelevate din structurile geologice prezentate în capitolul 5 pleacă de la determinarea conductivității stratelor productive.

Figura 6. Variația conductivității termice a policarbonatului

Punct	Temperatura măsurată,	Conductivitatea termică, k_t ,
măsurare	°C	mcal/ [°] C cms
1	10	0,13987
2	25	0,155377
3	40	0,1695
4	39,9	0,168613
5	22,5	0,147584
6	22,7	0,147825
7	22,6	0,147704
8	23	0,148188
9	22,9	0,148067
10	23,3	0,14855
11	23,1	0,148309
12	23,5	0,148792
13	23,6	0,148913
14	23,4	0,148671
15	20,5	0,145529
16	22,3	0,147342

Tabel 2 Valorile conductivității	termice a policarbonatulu
----------------------------------	---------------------------

2.7. Evaluarea conductivității termice a carotelor extrase din sondele de cercetare geologică a zonei de studiu

2.7.1. Structura geologică Suraia

Acestă structură geologică petrolieră face parte din Depresiunea Bârladului, zăcămintele de petrol și gaze asociate fiind de tipul brachianticlinal (**Tabel 3**).

Rocile rezervor sunt gresiile și calcarele din Mezozoic și gresiile din Silurian, Devonian și Carbonifer.

Rocile protectoare sunt intercalații impermeabile prezente în coloana litologică a acestei depresiuni.

Pentru a studia posibilitatea Sarmațianului de a furniza gaze s-a efectuat un foraj de cercetare în zona Suraia-Barcea și Suraia.

Din rocile în care s-au detectat gaze naturale au fost prelevate carote, cărora le-am determinat conductivitatea termică.

Datele de măsurare sunt cuprinse în Tabel 3.

Tabel 3. Geologia forajelor executate în zona Suraia

Foraj		Suraia A	Suraia Barcea
Adâncime foraj			
Interval stratigrafic (etaj)	Dacian	0-1460	0-1300
	Pontian	1460-2660	1300-2552
	Meoțian	2660-3330	2552-3140
	Sarmațian	3330-4956	3140-4330

xecutate in zona Suraia	Suraia A	Suraja Barcan
		Suraia Darcea
Adâncime foraj (m)	4956	4330
Vârstă geologică	Sarmațian	Sarmațian
Interval prelevare carotă	4751-4756	4064,5-4067
Descriere carotă	Argilă compactă	Gresie compactă
$t_1(^{\circ}\mathrm{C})$	22,7	23,6
<i>t</i> ₂ (°C)	22,9	25,1
$t_3(^{\circ}\mathrm{C})$	30,2	29,4
$t_4(^{\circ}\mathrm{C})$	39,9	39,9
$\Delta t_1 = t_2 - t_1 (^{\circ}\mathrm{C})$	0,2	1,5
$\Delta t_2 = t_3 - t_2(^{\circ}\mathrm{C})$	7,3	4,3
$\Delta t_3 = t_4 - t_3(^{\circ}\mathrm{C})$	9,7	10,5
<i>d</i> ₁ (m)	0,0670	0,09002
$S_1 = \frac{\pi d_1^2}{4} (\mathrm{m}^2)$	0,0035	0,00636
$z_1(m)$	0,006	0,006
<i>d</i> ₃ (m)	0,0670	0,09002
$S_3 = \frac{\pi d_3^2}{4} (\mathrm{m}^2)$	0,0035	0,00636
<i>z</i> ₃ (m)	0,006	0,006
$d_2(m)$	0,0670	0,0807
$S_2 = \frac{\pi d_2^2}{4} (\mathrm{m}^2)$	0,0035	0,0059
<i>z</i> ₂ (m)	0,067	0,037
k_t , mcal/°C cms	0,1681	0,1661
$k_r = \frac{k_t \frac{\Delta t_1}{z_1} S_1 + k_t \frac{\Delta t_3}{z_3} S_3}{2 \frac{\Delta t_2}{z_2} S_2}$, mcal/°C cms	1,2735	1,5299

Tabel 4. Determinarea conductivității termice pe probe (carote) recoltate din forajele executate în zona Suraia

2.7.2 Structura geologică Padina

Structura geologică petrolieră Padina, este caracterizată print-o cută slab exprimată la nivelul Sarmațianului și faliată în zona axială.

Zăcămintele de petrol sunt cantonate în Albian și Senonian iar cele de gaze au fost detectate în Sarmațian și Meoțian.

Și în această zonă (Smirna) s-a realizat un foraj geologic pentru a analiza Carboniferul și Devonianul.

Forajul Smirna A

- Adâncime foraj 4050 m,
- Intervalul stratigrafic
 - o 0-486 m Dacian,
 - o 486-542 Pontian
 - o 542-756 Meoțian
 - o 756-836 Sarmațian
 - o 836-956 Senonian

- o 956-1210 Albian
- o 1210-2090 Cretacic inferior
- o 2090-2160 Malm
- o 2160-2917 Carbonifer
- o 2917-3835 Devonian superior
- o 3835-4000 Devonian inferior

Tabel 5. Determinarea conductivității termice pe probe (carote) prelevate din forajele executate în zona în zona Smirna

Foraj	Smirna	Smirna	Smirna	Smirna
Adâncime foraj (m)	4050	4050	4050	4050
Interval prelevare carotă	2743,5-2746	3743,5-3746	3895,5-3897,2	4032,8-4033,1
Vârstă geologică	Carbonifer	Devonian superior	Devonian inferior	Devonian inferior
Descriere carotă	gresie	argilă compactă	argilă compactă	Conglomerat
$t_1(^{\circ}\mathrm{C})$	22,5	22,6	22,5	22,5
$t_2(^{\circ}\mathrm{C})$	23,9	24,1	23,5	23,2
<i>t</i> ₃ (°C)	29,3	29,4	29,2	32
$t_4(^{\circ}\mathrm{C})$	39,9	39,9	39,9	39,9
$\Delta t_1 = t_2 - t_1 (^{\circ}\text{C})$	1,4	1,5	1	0,7
$\Delta t_2 = t_3 - t_2(^{\circ}\mathrm{C})$	5,4	5,3	5,7	8,8
$\Delta t_3 = t_4 - t_3(^{\circ}\mathrm{C})$	20,6	10,5	10,7	7,9
<i>d</i> ₁ (m)	0,0670	0,0670	0,0670	0,0670
$S_1 = \frac{\pi d_1^2}{4} (\mathrm{m}^2)$	0,0035	0,0035	0,0035	0,0035
<i>z</i> ₁ (m)	0,006	0,006	0,006	0,006
<i>d</i> ₃ (m)	0,0670	0,0670	0,0670	0,0670
$S_3 = \frac{\pi d_3^2}{4} (\mathrm{m}^2)$	0,0035	0,0035	0,0035	0,0035
z ₃ (m)	0,006	0,006	0,006	0,006
<i>d</i> ₂ (m)	0,0670	0,0670	0,0670	0,06503
$S_2 = \frac{\pi d_2^2}{4} (\mathrm{m}^2)$	0,0035	0,0035	0,0035	0,0033
<i>z</i> ₂ (m)	0,068	0,055	0,068	0,075
k_t , mcal/°C cms	0,1669	0,1659	0,1668	0,1669
$k_r = \frac{k_t \frac{\Delta t_1}{z_1} S_1 + k_t \frac{\Delta t_3}{z_3} S_3}{2 \frac{\Delta t_2}{z_2} S_2}, \text{ mcal/°C cms}$	2,0923	1,7226	1,9403	1,0831

Se adeverește prezența gazelor în Meoțian dar s-au analizat și celelalte strate geologice posibile a fi furnizoare de gaze naturale și anume Devonian și Carbonifer.

2.7.3 Structura geologică sud estică a Platformei Moesice

Analizele geologice efectuate pe structura geologică estică a Platformei Moesice au pus în evidență o serie de zăcăminte de gaze - zona de sud est (aliniamentul Oprisenesti, Bordei Verde, Liscoteanca, Bertesti, Stancuta, Jugureanu, Padina, Gradistea, Balta Alba) și de țiței cu gaze asociate - zona sud vest (Urziceni–Garbova–Brăgăreasa–Padina–Jugureanu– Oprisenesti–Plopu–Bordei Verde–Liscoteanca).

Foraj	Ianca Berlescu A	Ianca Berlescu A	Ianca Berlescu A	Cireșu A
Adâncime foraj (m)	3550	3550	3550	3146
Interval prelevare carotă	2177,5-2138,5	2767-2769	2803-2929	1910-1913
Vârstă geologică	Sarmațian	Devonian	Devonian	Sarmațian
Descriere carotă	Calcar compact	Calcar/dolomit fisurat	Calcar/dolomit compact	Marnă fisurată
$t_1(^{\circ}\mathrm{C})$	23,4	22,3	22,5	20,8
$t_2(^{\circ}\mathrm{C})$	25,1	24,3	25,1	21,7
$t_3(^{\circ}\mathrm{C})$	30,2	29,6	29,5	31,3
$t_4(^{\circ}\mathrm{C})$	39,9	39,9	39,9	39,9
$\Delta t_1 = t_2 - t_1 (^{\circ}\mathrm{C})$	1,7	2	2,6	0,9
$\Delta t_2 = t_3 - t_2(^{\circ}\mathrm{C})$	5,1	5,3	4,4	9,6
$\Delta t_3 = t_4 - t_3(^{\circ}\mathrm{C})$	9,7	10,3	10,4	8,6
<i>d</i> ₁ (m)	0,0900	0,0900	0,0900	0,0670
$S_1 = \frac{\pi d_1^2}{4} (\mathrm{m}^2)$	0,0063	0,0063	0,0063	0,0035
<i>z</i> ₁ (m)	0,006	0,006	0,006	0,006
<i>d</i> ₃ (m)	0,0900	0,0900	0,0900	0,0670
$S_3 = \frac{\pi d_3^2}{4} (\mathrm{m}^2)$	0,0063	0,0063	0,0063	0,0035
$z_3(m)$	0,006	0,006	0,006	0,006
$d_2(m)$	0,0880	0,0880	0,0890	0,0900
$S_2 = \frac{\pi d_2^2}{4} (\mathrm{m}^2)$	0,0060	0,0060	0,0062	0,0063
$z_2(m)$	0,061	0,05	0,05	0,038
k_t , mcal/°C cms	0,1656	0,01651	0,01644	0,1664
$k_{r} = \frac{k_{t} \frac{\Delta t_{1}}{z_{1}} S_{1} + k_{t} \frac{\Delta t_{3}}{z_{3}} S_{3}}{2 \cdot \frac{\Delta t_{2}}{z_{2}} S_{2}}$	1,9686	1,6704	2,0696	0,2890

Tabel 6. Determinarea conductivității termice a forajelor Ianca Berlescu-Cireșu

mcal/°C cms

Foraj			Ianca Berlești A	Zăvoia A	Cireșu A
Adâncime foraj		3350	3500	3146	
Interval (etaj)	stratigrafic	Pliocen	0-855		
		Cuaternar		0-584	0-578
		Dacian	855-1385	584-1003	578-1240
		Pontian	1385-1680	1003-1158	1240-1397
		Meoțian	1680-2034	1158-1408	1397-1748
		Sarmațian	2034-2750	1408-1724	1748-1992
		Badenian superior		1724-1794	1992-2067
		Albian		1794-1890	2067-2160
		Cretacic inferior		1890-1990	2160-2406
		Malm		1990-2988	2406-3146
		Devonian	2750-3050	2988-3212	
		Wenlokian	3050-3150		
		Silurian		3212-3500	
		Ordovician	3150-3350		
		Basement			

Tabel 7. Geologia forajelor Ianca Berlescu A, Cireșu A

Tabel 8. Determinarea condu	ictivității termice a struct	turii Zăvoaia	
Foraj	Zăvoaia	Zăvoaia	Zăvoaia
Adâncime foraj (m)	3500	3500	3500
Interval prelevare carotă	1619-1623	1857-1859	2803-2831
Vârstă geologică	Sarmațian	Albian	Malm
Descriere carotă	Marne cu incluziuni calcaroase	Calcar	Gresie calcaroasa
$t_1(^{\circ}\mathrm{C})$	23,3	23,1	23,5
$t_2(^{\circ}\mathrm{C})$	23,4	23,5	24,8
$t_3(^{\circ}\mathrm{C})$	31,3	30,4	29,9
$t_4(^{\circ}\mathrm{C})$	39,9	39,9	39,9
$\Delta t_1 = t_2 - t_1 (^{\circ}\mathrm{C})$	0,1	0,4	5,1
$\Delta t_2 = t_3 - t_2(^{\circ}\mathrm{C})$	7,9	6,9	8,6
$\Delta t_3 = t_4 - t_3(^{\circ}\mathrm{C})$	8,6	9,5	10
<i>d</i> ₁ (m)	0,0600	0,0600	0,0600
$S_1 = \frac{\pi d_1^2}{4} (\mathrm{m}^2)$	0,0028	0,0028	0,0028
$z_1(m)$	0,006	0,006	0,006
<i>d</i> ₃ (m)	0,0600	0,0600	0,0600
$S_3 = \frac{\pi d_3^2}{4} (\mathrm{m}^2)$	0,0028	0,0028	0,0028
$z_3(m)$	0,006	0,006	0,006
$d_2(m)$	0,0580	0,0510	0,0520
$S_2 = \frac{\pi d_2^2}{4} (\mathrm{m}^2)$	0,0026	0,0510	0,0520
$z_2(m)$	0,055	0,057	0,037
k_t , mcal/°C cms	0,0168	0,1677	0,1663
$k_t \frac{\Delta t_1}{Z_1} S_1 + k_t \frac{\Delta t_3}{Z_2} S_3$	0,9095	1,5827	1,5127

ductivității tomoico o structurii 7ă Tabal 9 D . •

 $k_r = \frac{\frac{z_1}{z_1} + \frac{z_3}{z_3} + \frac{z_3}{z_2}}{2 \cdot \frac{\Delta t_2}{z_2} s_2}$, mcal/°C cms

2.7.4 Structura geologică Smeeni

Pe structura geologică Smeeni sunt obiective de interes petrolifer pe diferite etaje (intervale stratigrafice): Badenian, Sarmațian, Meoțian, Ponțian, Dacian, Holocen.

Structura geologică Smeeni este o structură puțin analizată, ea făcând parte din Platforma Moesică (Tabel 9). Sunt detectate zone cu gaze naturale asociate cu condensat (posibil a fi capcană geologică).

Tabel 9. Geologia forajului Smeeni A

Foraj		Smeeni A
Interval stratigrafic (etaj)	Cuaternar	0-1322
	Dacian	1322-2126
	Pontian	2126-2575
	Meoțian	2575-2974
	Sarmațian	2974-4243
	Badenian	4243-4343

Foraj	Smeeni A	Smeeni A	Smeeni A
Adâncime foraj (m)	4343	4343	4343
Interval prelevare carotă	4209-4239	4280-4287	4287-4300
Vârstă geologică	Sarmațian	Badenian	Badenian
Descriere carotă	Marnă	Argilă compactă	Calcar
$t_1(^{\circ}\mathrm{C})$	22,7	22,5	22,6
$t_2(^{\circ}\mathrm{C})$	23,7	24,2	23,3
$t_3(^{\circ}\mathrm{C})$	31	31,3	30,6
$t_4(^{\circ}\mathrm{C})$	39,9	39,9	39,9
$\Delta t_1 = t_2 - t_1 (^{\circ}\text{C})$	1	1,7	0,7
$\Delta t_2 = t_3 - t_2(^{\circ}\mathrm{C})$	7,3	7,1	7,3
$\Delta t_3 = t_4 - t_3(^{\circ}\text{C})$	8,9	8,6	9,3
<i>d</i> ₁ (m)	0,6702	0,6702	0,6702
$S_1 = \frac{\pi d_1^2}{4} (\mathrm{m}^2)$	0,0035	0,0035	0,0035
<i>z</i> ₁ (m)	0,006	0,006	0,006
<i>d</i> ₃ (m)	0,6702	0,6702	0,6702
$S_3 = \frac{\pi d_3^2}{4} (\mathrm{m}^2)$	0,0035	0,0035	0,0035
<i>z</i> ₃ (m)	0,006	0,006	0,006
<i>d</i> ₂ (m)	0,0590	0,0650	0,0650
$S_2 = \frac{\pi d_2^2}{4} (\mathrm{m}^2)$	0,0027	0,0032	0,0032
<i>z</i> ₂ (m)	0,028	0,03	0,056
k_t , mcal/°C cms	0,1665	0,1651	0,1671
$k_r = \frac{k_t \frac{\Delta t_1}{z_1} S_1 + k_t \frac{\Delta t_3}{z_3} S_3}{2 \frac{\Delta t_2}{z_2} S_2} \operatorname{mcal}/^{\circ} \mathrm{C} \operatorname{cms}$	0,6794	0,6363	1,1353

2.7.5 Structura geologică Belciugatele

Este o zonă foarte aproape de structura petroliferă Ileana, cu posibile capcane geologice în care să se acumuleze gaze (Tabel 12).

Tabel 11. Determinarea conductivității termice ale fo Foraj	rajului Belciugatele Belciugatele
Adâncime foraj (m)	3350
Interval prelevare carotă	1755,5-1756
Vârstă geologică	Malm
Descriere carotă	Calcar
$t_1(^{\circ}\mathrm{C})$	22,9
$t_2(^{\circ}\mathrm{C})$	23,8
<i>t</i> ₃ (°C)	30
$t_4(^{\circ}\mathrm{C})$	39,9
$\Delta t_1 = t_2 - t_1 (^{\circ}\mathrm{C})$	0,9
$\Delta t_2 = t_3 - t_2(^{\circ}\mathrm{C})$	6,2
$\Delta t_3 = t_4 - t_3(^{\circ}\mathrm{C})$	9,9
<i>d</i> ₁ (m)	0,0670
$S_1 = \frac{\pi d_1^2}{4} (\mathrm{m}^2)$	0,0035
<i>z</i> ₁ (m)	0,006
<i>d</i> ₃ (m)	0,0670
$S_3 = \frac{\pi d_3^2}{4} (\mathrm{m}^2)$	0,0035
<i>z</i> ₃ (m)	0,006
$d_2(m)$	0,0600
$S_2 = \frac{\pi d_2^2}{4} (m^2)$	0,0028
<i>z</i> ₂ (m)	0,06

 k_t , mcal/°C cms

k,

0,6669

$$=\frac{k_t\frac{\Delta t_1}{z_1}S_1+k_t\frac{\Delta t_3}{z_3}S_3}{2\cdot\frac{\Delta t_2}{z_3}S_2}, \text{ mcal/}^{\circ}\text{C cm s}$$

1,8126

$$z_r = \frac{k_t \frac{1}{z_1} S_1 + k_t \frac{1}{z_3} S_3}{2 \cdot \frac{\Delta t_2}{z_2} S_2}, \text{ mcal/°C cm}$$

Foraj	0 0	Belciugatele A
Adâncime foraj		3350
Interval stratigrafic (etaj)	Dacian	0-587
	Pontian	587-654
	Meoțian	654-872
	Sarmațian	872-1136
	Albian	1136-1204
	Cretacic inferior	1204-1700
	Malm	1700-2135
	Dogger	2135-2155
	Triasic mijlociu	2155-2265
	Triasic inferior	2265-2325
	Carbonifer	2325-3350

Tabel 12. Geologia structurii geologice Belciugatele

2.7.6 Structura geologică Slobozia

Foraj	Slobozia	Slobozia
Adâncime foraj (m)	1603	1603
Interval prelevare carotă	1298,5-1301	1602-1603
Vârstă geologică	Cretacic inferior	Cretacic inferior
Descriere carotă	Calcar	Calcar fisurat
$t_1(^{\circ}\mathrm{C})$	22,7	23
$t_2(^{\circ}\mathrm{C})$	24,1	23,5
$t_3(^{\circ}\mathrm{C})$	29,2	30,2
$t_4(^{\circ}\mathrm{C})$	39,9	39,9
$\Delta t_1 = t_2 - t_1 (^{\circ}\mathrm{C})$	1,4	0,5
$\Delta t_2 = t_3 - t_2(^{\circ}\mathrm{C})$	5,1	6,7
$\Delta t_3 = t_4 - t_3(^{\circ}\mathrm{C})$	10,7	9,7
<i>d</i> ₁ (m)	0,0670	0,0670
$S_1 = \frac{\pi d_1^2}{4} (\mathrm{m}^2)$	0,0035	0,0035
<i>z</i> ₁ (m)	0,006	0,006
<i>d</i> ₃ (m)	0,0670	0,0670
$S_3 = \frac{\pi d_3^2}{4} (\mathrm{m}^2)$	0,0035	0,0035
$z_3(m)$	0,006	0,006
<i>d</i> ₂ (m)	0,0670	0,0640
$S_2 = \frac{\pi d_2^2}{4} (\mathrm{m}^2)$	0,0035	0,0032
<i>z</i> ₂ (m)	0,083	0,085
k_t , mcal/°C cms	0,1662	0,1676
$k_r = \frac{k_t \frac{\Delta t_1}{z_1} S_1 + k_t \frac{\Delta t_3}{z_3} S_3}{2 \cdot \frac{\Delta t_2}{z_2} S_2}, \text{ mcal/°C cms}$	2,7273	1,9808

Tabel 13	. Determinarea	conductivității	termice ale	e foraiului	Slobozia
					010000114

2.8. Analiza conductivității termice a carotelor extrase din zonele cu acumulări de gaze și țiței

Conductivitățile termice determinate pe carotele extrase din zonele cu acumulări de gaze și țiței, au fost centralizate în Tabel 14, cu scopul de a se analiza influența etajului geologic asupra formării rocilor.

Forajul	Adâncime foraj (m)	Interval prelevare carotă	Interval stratigrafic (etaj)	Fluide detectate în carotele extrase	Tip rocă	K _r mcal/°C cms
Belciugatele	3350	1755,5-1756	Malm	Ţiței și gaze	Calcar	1,8126
Slobozia	1603	1298,5-1301	Cretacic inferior	Gaze și condensat	Calcar	2,7273
Slobozia	1603	1602-1603	Cretacic inferior	Gaze și condensat	Calcar fisurat	1,9808
Smeeni A	4343	4209-4239	Sarmațian	Gaze și condensat	Marnă	0,6794
Smeeni A	4343	4280-4287	Badenian	Gaze și condensat	Argilă compactă	0,6363
Smeeni A	4343	4287-4300	Badenian	Gaze și condensat	calcar	1,1353
Suraia A	4956	4751-4756	Sarmațian	Gaze și condensat	Argilă compactă	1,2735
Suraia B	4330	4064,5-4067	Sarmațian	Gaze și condensat	Gresie compactă	1,5299
Smirna	4050	2743,5-2746	Carbonifer	Gaze și condensat	Gresie	2,0923
Smirna	4050	3743,5-3746	Devonian superior	Gaze și condensat	Argilă compactă	1,7226
Smirna	4050	3895,5- 3897,2	Devonian inferior	Gaze și condensat	Argilă compactă	1,9403
Smirna	4050	4032,8- 4033,1	Devonian inferior	Gaze și condensat	Conglomerat	1,0831
Ianca Berlescu	3550	2177,5- 2138,5	Sarmațian	Țiței și gaze	Calcar compact	1,9686
Ianca Berlescu	3550	2767-2769	Devonian	Țiței și gaze	Calcar/	1,6704
					dolomit fisurat	
Ianca Berlescu	3550	2803-2929	Devonian	Ţiţei și gaze	Calcar/dolomit compact	2,0696
Cireșu A	3146	1910-1913	Sarmațian	Țiței și gaze	Marnă fisurată	0,2890
Zăvoia	3500	1619-1623	Sarmațian	Țiței și gaze	Marne cu incluziuni	0,9095
Zăvoaia	3500	1857-1859	Albian	Ţiței și gaze	Calcar	1,5827
Zăvoaia	3500	2803-2831	Malm	Ţiţei și gaze	Gresie calcaroasa	1,5127

 Tabel 14. Analiza carotelor pe intervale stratigrafice

Se constată că valorile acestei proprietăți termice de transport depind de compoziția mediului poros, respectiv zona de zăcământ de unde provin. Carotele au fost roci consolidate, iar rezultatele obținute sunt referitoare la matricea solidă, deoarece fie așa s-au prezentat inițial, fie în timpul măsurătorilor țițeiul a fost expulzat din porii rocii.

2.9. Relații statistice între proprietățile rocilor

Carotele recoltate din sonde au fost supuse și altor determinări și anume:

-Densitate, g/cm³,

-Porozitate, %,

-Permeabilitate, mD.

Tabel	15.	Ecuațiile	statistice	de	determinare	а	densității	(g/cm^3)	funcție	de
conductivitate termică-pe probele extrase din foraje (mcal/°C cms)										

Forajul	Interval măsurat (m)	Tip rocă	K _r mcal/°C cms	Densitate, g/cmc	Ecuație	R ²
Slobozia	1602-1603	Calcar fisurat	1,9808	2,76	y = 0,2858x + 2,1612	1
Slobozia	1298,5-1301	Calcar	2,7273	2,95		
Smeeni A	4280-4287	Argilă compactă	0,6363	2,69	y = 0,1367x + 2,605	1,00
Smeeni A	4209-4239	Marnă	0,6794	2,7		
Smeeni A	4287-4300	Calcar	1,1353	2,76		
Smirna	4032,8- 4033,1	Conglomerat	1,0831	2,56	y = 0,2045x + 2,3353	0,9952
Smirna	3743,5-3746	Argilă compactă	1,7226	2,68		
Smirna	3895,5- 3897,2	Argilă compactă	1,9403	2,73		
Smirna	2743,5-2746	Gresie	2,0923	2,77		
Ianca Berlescu	2767-2769	Calcar/dolomit fisurat	1,6704	2,3	y = 1,4071x - 0,0341	0,9623
Ianca Berlescu	2177,5- 2138,5	Calcar compact	1,9686	2,8		
Ianca Berlescu	2803-2929	Calcar/dolomit compact	2,0696	2,83		
Zăvoia	1619-1623	Marne cu incluziuni	0,9095	2,5	y = 0,3778x + 2,1556	0,9976
Zăvoia	2803-2831	Gresie calcaroasa	1,5127	2,72		
Zăvoia	1857-1859	Calcar	1,5827	2,76		

Pentru unele intervale stratigrafice (etaje) s-au efectuat analize statistice pentru a evidenția ecuațiile de corelație dintre conductivitatea termică și proprietățile mai sus menționate.

Ecuațiile sunt de tipul :

y = ax + b

unde:

-x este proprietatea determinată mai sus (densitatea, porozitatea, permeabilitatea) și y este conductivitatea termică,

(28)

-a și b sunt coeficienți numerici.

Kr Interval Porozitate, măsurat \mathbf{R}^2 Forajul Tip rocă Ecuație mcal/°C cms % (m) 1602-1603 1,9808 Slobozia Calcar fisurat 0,5 y = 0,3561x + 2,0221 Slobozia 1298,5-1301 Calcar 2,7273 2,2 Smeeni A 4280-4287 Argilă compactă 0,6363 0,8 y = 0,9509x + 0,22310,9875 Smeeni A 4209-4239 Marnă 0,6794 0,9 Smeeni A 4287-4300 Calcar 1,1353 1,3 Conglomerat 1,0831 Smirna 4032,8-4033,1 1,2 0,9164 y = 0,7897x + 0,2975Smirna Argilă compactă 3743,5-3746 1,7226 1,50 1,9403 Smirna 3895,5-3897,2 Argilă compactă 1,9 Gresie Smirna 2,0923 2743,5-2746 1,99 Calcar/dolomit Ianca 2767-2769 1,6704 Berlescu fisurat 1 y = 11,588x - 18,651 0,8409 Ianca Calcar compact 2177,5-2138,5 1,9686 Berlescu 3 Ianca Calcar/dolomit 2,0696 2803-2929 Berlescu compact 6,2 Marne cu Zăvoia 1619-1623 0,9095 incluziuni 5,2 y = 9,4431x - 3,4729 0,9534 Gresie Zăvoia 2803-2831 1,5127 10 calcaroasa Zăvoia 1857-1859 Calcar 1,5827 12,2

Tabel 16. Ecuațiile statistice de determinare a porozității (%) funcție de conductivitate termică (mcal/[°]C cms)

Forajul	Interval măsurat (m)	Tip rocă	K _r (mcal/°C cms)	Permeabilitate (mD)	Ecuație	R ²
Slobozia	1602-1603	Calcar fisurat	1,9808	0,01	y = 0,775x + 1,1923	1
Slobozia	1298,5-1301	Calcar	2,7273	1,2		
Smeeni A	4280-4287	Argilă compactă	0,6363	0,005	y = 3,6512x - 2,3481	0,999
Smeeni A	4209-4239	Marnă	0,6794	0,1		
Smeeni A	4287-4300	Calcar	1,1353	1,8		
Smirna	4032,8-4033,1	Conglomerat	1,0831	0,016	y = 0,0048x + 0,0103	0,806
Smirna	3743,5-3746	Argilă compactă	1,7226	0,017		
Smirna	3895,5-3897,2	Argilă compactă	1,9403	0,02		
Smirna	2743,5-2746	Gresie	2,0923	0,021		
Ianca Berlescu	2767-2769	Calcar/dolomit fisurat	1,6704	0,03	y = 0,0048x + 0,0103	0,91
Ianca Berlescu	2177,5-2138,5	Calcar compact	1,9686	0,397		
Ianca Berlescu	2803-2929	Calcar/dolomit compact	2,0696	0,8		
Zăvoia	1619-1623	Marne cu incluziuni	0,9095	0,01	y = 1,3172x - 1,1884	1
Zăvoia	2803-2831	Gresie calcaroasa	1,5127	0,8		
Zăvoia	1857-1859	Calcar	1,5827	0,9		

Tabel 17. Ecuațiile statistice de determinare a permeabilității (mD) funcție de conductivitate termică (mcal/ $^{\circ}$ C cms)

2.10. Analiza calitativă a conductivității termice a intervalelor stratigrafice (etaje) analizate funcție de datele din literatura de specialitate

Literatura de specialitate a dat valori pentru conductivitatea termică a stratelor geologice și pentru densitate.

Acuratețea determinărilor noastre poate fi exprimată prin relația deviației absolute (AAD%) calculată cu ecuația:

$$AAD = \frac{100}{N} \sum_{i=1}^{N} \frac{|v_{exp,i} - v_{cal,i}|}{v_{exp,i}}$$
(29)

unde:

 $-v_{exp,i}$, valoarea experimentală;

 $-v_{cal,i}$, valoarea calculată.

densitate (va	lori determi	inate	și valori din lite	ratură)			
Interval	Conductivita	tea	Conductivitatea	Deviația	Densitatea	Densitatea	Deviația
strationafic	termică	din	termică	absolută,	din	determinată	absolută,
stratigiane	literatura	de	determinată,	conductivitate	literatura	ρ (kg/m ³)	densitate(%)
	specialitate		k. (mcal/°C cms)	termică (%)	de	p; (19/11)	
	λ . (mcal/°C cms)				specialitate		
					ρ , (kg/m ³)		
Cretacic	1,85		1,9809	6,56	2620	2950	11,18
Carbonifer	1,73		2,0923	17,22	2780	2770	6,85

Tabel 18. Diferențe dintre conductivitatea termică a intervalelor stratigrafice (etaje) și

Eroarea este de maximum 17 % pentru etajul geologic carbonifer.

Tabel 19. Diferențe dintre conductivitatea termică a stratelor geologice și densitate (valori determinate și valori din literatură)

Roca	Conductivitatea termică echivalentă	Densitatea	Conductivitatea termică echivalentă determinată	Deviația absolută, conductivitate termică (%)	Densitate determinată	Deviația absolută, densitate(%)
Grasia						
argiloasă	0,65	2,77	0,64	1,56	2,77	24,47
Argilă șistoasă	0,48	2,57	0,53	9,43	2,68	35,72
Calcar	0,6	1,1455	0,66	9,09	2,80	29,69
Calcar marnos	0,9	2,62	0,82	9,76	2,83	26,87

Eroarea este de maximum 10 % la conductivitate, în cazul argilei șistoase, datorită faptului că nu era pură.

La densitate erorile sunt mari fiindcă carotele alese nu erau pure, fiind impurificate cu alte materiale

2.11 Evaluarea modelelor de simulare a conductivității termice

Am prezentat modele de calcul a conductivității termice a zăcămintelor de fluide petroliere.

În urma realizării experimentelor pe carotele extrase din zone potențiale furnizoare de fluide petroliere, am reușit să determinăm conductivitatea rocilor.

De asemenea, am determinat porozitatea și densitatea acestora.

Datele obținute le-am utilizat pentru simularea conductivității termice a zăcămintelor saturate cu gaze, apă, țiței pur și țiței în amestec cu 35 % apă.

Totodată am creat și un model propriu de simulare a conductivităților termice, bazat pe interpretarea statistică a datelor obținute în urma calculelor efectuate cu 5 modele analizate.

Modelul dezvoltat în cadrul acestei lucrări pleacă de la ideea că roca analizată nu este pură (adică s-a introdus în calcul densitatea rocii analizate).

Modelul a fost testat pe carotele analizate în aparatul din **Figura** 7 și prezentate în tabelele de mai jos pentru toate fluidele existente în cadrul zăcământului.

Figura.7. Aparat de testare a conductivității termice (metoda barei divizate)

De asemenea, în calcule s-a introdus porozitatea, ca fiind factor de bază în calculul conductivității totale.

$$\lambda_z = \frac{1}{(\rho_r)} \cdot \left(\lambda_f^{(1-\theta)} \cdot \lambda_f^{\theta}\right) \tag{30}$$

unde:

 $-\rho_r$ este densitatea rocii, kg/m³,

 $-\lambda_z$ conductivitatea zăcământului, W/m K,

 $-\lambda_z$ este conductivitatea fluidului din ză
cământ, W/m K,

 $-\lambda_z$ reprezintă conductivitatea rocilor din zăcământ, W/m K,

 $-\theta$ este porozitatea, %.

Tip rocă	k _r W/mK	Porozitate, (10 %)	Modelul serie k _z	Modelul paralel k _z	Modelul geometric ponderat, k _z	Modelul Beck k _z	Modelul Krupiczka k _z	Modelul Chiş, Jugăstreanu k _z
Calcar fisurat	0,831936	0,5	4,45	0,48	0,294	0,42	1,35	1,07
Calcar	1,145466	2,2	15,88	1,09	0,405	0,50	1,21	1,37
Argilă compactă	0,267246	1,9	11,25	0,01	0,094	0,04	0,34	0,35
Marnă	0,285348	1,2	8,53	0,10	0,101	0,11	0,38	0,37
Calcar	0,476826	1,3	9,37	0,03	0,168	0,06	0,61	0,61
Conglomerat	0,454902	1,2	8,79	0,07	0,161	0,08	0,60	0,63
Argilă compactă	0,723492	1,5	10,85	0,17	0,256	0,06	0,89	0,95
Argilă compactă	0,814926	1,9	13,51	0,49	0,288	0,22	0,93	1,05
Gresie	0,878766	1,99	14,18	0,61	0,311	0,28	0,99	1,12
Calcar/dolo mit fisurat	0,701568	1,02	7,82	0,12	0,248	0,12	0,95	1,08
Calcar compact	0,826812	3	20,66	1,26	0,292	0,51	0,84	1,04
Calcar/dolo mit compact	0,869232	1,5	10,96	0,24	0,307	0,10	1,05	1,09
Marnă	0,38199	1,4	9,72	0,03	0,135	0,06	0,49	0,54
Gresie calcaroasa	0,635334	1,1	8,30	0,08	0,225	0,09	0,84	0,83
Calcar	0,664734	1,5	10,79	0,14	0,235	0,04	0,82	0,85

Tabel 20. Valorile conductivității termice calculată cu modele de simulare, pentru țiței

Figura 8. Variația parametrilor conductivităților zăcămintelor analizate (țiței)

		,	1	-			· 1	,,,, .
	k _r	Porozitate	Modelul	Modelul	Modelul	Modelul	Modelul	Modelul
Tin no ož	W/mK	(10 %)	serie	paralel	geometric	Beck	Krupiczka	Chiș,
Tip roca			k _z	k _z	ponderat,	k _z	kz	Jugăstreanu
					k _z			k _z
Calcar fisurat	0,83	0,5	0,23	0,23	0,301	0,43	1,32	1,09
Calcar	1,15	2,2	0,06	0,06	0,414	0,50	1,19	1,40
Argilă compactă	0,27	1,9	0,09	0,09	0,097	0,05	0,33	0,36
Marnă	0,29	1,2	0,12	0,12	0,103	0,11	0,37	0,38
Calcar	0,48	1,3	0,11	0,11	0,172	0,06	0,60	0,62
Conglomerat	0,45	1,2	0,12	0,12	0,164	0,09	0,58	0,64
Argilă compactă	0,72	1,5	0,09	0,09	0,262	0,06	0,87	0,98
Argilă compactă	0,81	1,9	0,08	0,08	0,295	0,22	0,91	1,08
Gresie	0,88	1,99	0,07	0,07	0,318	0,28	0,97	1,15
Calcar/dolomit fisurat	0,70	1,02	0,13	0,13	0,254	0,12	0,92	1,10
Calcar compact	0,83	3	0,05	0,05	0,299	0,51	0,82	1,07
Calcar/dolomit compact	0,87	1,5	0,09	0,09	0,314	0,10	1,03	1,11
Marnă	0,38	1,4	0,11	0,11	0,138	0,06	0,48	0,55
Gresie calcaroasa	0,64	1,1	0,12	0,12	0,230	0,10	0,82	0,84
Calcar	0,66	1,5	0,10	0,10	0,240	0,04	0,80	0,87

Tabel 21. Valorile conductivității termice calculată cu modele de simulare, pentru țiței și apă

Figura 9. Variația parametrilor conductivităților zăcămintelor analizate (țiței și apă)

	k _r	Porozitate,	Modelul	Modelul	Modelul	Modelul	Modelul	Modelul
Tin rocă	W/mK	(10 %)	serie	paralel	geometric	Beck	Krupiczka	Chiș,
Tip Toca			kz	kz	ponderat,	kz	k _z	Jugăstreanu
					k _z			k _z
Calcar fisurat	0,83	0,5	0,70	0,72	1,382	0,72	0,25	5,01
Calcar	1,15	2,2	0,39	0,03	1,902	0,15	0,31	6,45
Argilă compactă	0,27	1,9	3,88	0,92	0,444	1,33	0,08	1,65
Marnă	0,29	1,2	0,79	0,68	0,474	0,71	0,08	1,76
Calcar	0,48	1,3	0,67	0,65	0,792	0,66	0,14	2,87
Conglomerat	0,45	1,2	0,66	0,64	0,756	0,65	0,13	2,95
Argilă	0.72	1.5	0.57	0.55	1 202	0.56	0.21	1 18
compactă	0,72	1,5	0,37	0,55	1,202	0,50	0,21	4,40
Argilă	0.81	1.9	0.50	0.43	1.353	0.45	0.23	4.96
compactă	- 7 -	7-	- ,	- , -	·	-, -	- , -	7
Gresie	0,88	1,99	0,47	0,35	1,460	0,39	0,24	5,27
Calcar/dolomit	0.70	1.02	0.61	0.61	1.165	0.61	0.20	5.07
fisurat		7 -	- , -	- , -	,	- , -	- 7 -	- 7
Calcar	0,83	3	0,40	0,18	1,373	0,28	0,23	4,90
compact								
Calcar/dolomit	0,87	1,5	0,53	0,48	1,444	0,50	0,25	5,10
Compact	0.20	1.4	0.90	0.70	0.624	0.72	0.11	2.54
Marne	0,38	1,4	0,80	0,70	0,634	0,73	0,11	2,54
Gresie	0,64	1,1	0,61	0,61	1,055	0,61	0,18	3,88
caicaroasa	0.66	1.7	0.50	0.50	1 104	0.50	0.10	4.00
Calcar	0,66	1,5	0,59	0,58	1,104	0,59	0,19	4,00

Tabel 22. Valorile conductivității termice calculată cu modele de simulare, pentru apă

Figura 10. Variația parametrilor conductivităților zăcămintelor analizate (apă)

Tabel 23.	Valorile	conductivității	termice	calculată	cu	modele	de	simulare,	pentru	gaze
naturale										

	k _r	Porozitate,	Modelul	Modelul	Modelul	Modelul	Modelul	Modelul
Tin no ož	W/mK	(10 %)	serie	paralel	geometric	Beck	Krupiczka	Chiș,
Tip Toca			k _z	k _z	ponderat,	k _z	kz	Jugăstreanu
					kz			kz
Calcar fisurat	0,83	0,5	0,07	0,43	0,077	0,36	5,91	0,28
Calcar	1,15	2,2	0,02	1,30	0,106	0,62	3,99	0,36
Argilă compactă	0,27	1,9	0,02	0,18	0,025	0,08	1,15	0,09
Marnă	0,29	1,2	0,03	0,02	0,026	0,00	1,40	0,10
Calcar	0,48	1,3	0,03	0,10	0,044	0,05	2,24	0,16
Conglomerat	0,45	1,2	0,03	0,05	0,042	0,02	2,20	0,16
Argilă compactă	0,72	1,5	0,02	0,31	0,067	0,17	3,14	0,25
Argilă compactă	0,81	1,9	0,02	0,67	0,075	0,34	3,15	0,28
Gresie	0,88	1,99	0,02	0,80	0,081	0,40	3,30	0,29
Calcar/dolomit	0.70	1.02	0.03	0.02	0.065	0.02	3 60	0.28
fisurat	0,70	1,02	0,05	0,02	0,005	0,02	5,00	0,20
Calcar compact	0,83	3	0,01	1,55	0,076	0,62	2,59	0,27
Calcar/dolomit compact	0,87	1,5	0,02	0,38	0,080	0,21	3,73	0,28
Marnă	0,38	1,4	0,02	0,11	0,035	0,05	1,76	0,14
Gresie calcaroasa	0,64	1,1	0,03	0,03	0,059	0,01	3,16	0,22
Calcar	0,66	1,5	0,02	0,28	0,061	0,15	2,90	0,22

Figura 11. Variația parametrilor conductivităților zăcămintelor analizate (gaze naturale)

Tabel 24. Valorile con	nductivității termice	calculată cu	1 modele de	simulare și	preluate
din literatura de specialitate	pentru <i>Gresie satura</i>	ıtă			

Mediul poros saturat	Conductivitatea termică echivalentă [19]	Modelul serie k _z	Modelul paralel k _z	Modelul geometric ponderat, k _z	Modelul Beck k _z	Modelul Krupiczka k _z	Modelul Chiş, Jugăstreanu k _z
cu muide	λ W/mK						
-cu aer	0,877	0,02	0,80	0,081	0,40	3,30	0,29
-cu apă	2,75	0,47	0,35	1,460	0,39	0,24	5,27
-cu țiței	1,36	14,18	0,61	0,311	0,28	0,99	1,12
-cu țiței și gaze	2,47	0,07	0,07	0,318	0,28	0,97	1,15

Figura 12. Valorile conductivității termice calculată cu modele de simulare și preluate din literatura de specialitate pentru *Gresie saturată*

Tabel 25. Valorile conductivității termice calculată cu modele de simulare și preluate din literatura de specialitate pentru *Calcar*

Mediul poros saturat cu	Conductivitatea termică echivalentă [19]	Modelul serie k _z	Modelul paralel k _z	Modelul geometric ponderat, k _z	Modelul Beck k _z	Modelul Krupiczka k _z	Modelul Chiş, Jugăstreanu k _z
fluide	λ W/mK						
-cu aer	1,7	0,02	1,30	0,106	0,62	3,99	0,36
-cu apă	3,55	0,39	0,03	1,902	0,15	0,31	6,45
-cu țiței	2,15	15,88	1,09	0,405	0,50	1,21	1,37
-cu țiței și gaze	2,92	0,06	0,06	0,414	0,50	1,19	1,40

Figura 13. Valorile conductivității termice calculată cu modele de simulare și preluate din literatura de specialitate pentru *Calcar*

Analizând valorile obținute prin modele cu datele din literatura de specialitate putem afirma următoarele:

-Valorile cele mai apropiate de datele din literatura de specialitate sunt oferite de modelul Chis, Jugăstreanu,

-Modelul paralel și modelul Beck oferă rezultate negative ale conductivității,

-Modelul Chiş, Jugăstreanu are erori în calculul conductivității termice ale zăcămintelor afectate de apă, deoarece nu s-a introdus în calcul apă de zăcământ ci apă fără salinitate,

-Testarea cu aer, față de calculul conductivității rocilor cu gaze naturale, aduce valori mai mari ale conductivității zăcămintelor.

2.12 Rezultate

Scopul acestei analize a fost compararea rezultatelor experimentale cu cele aflate prin calcul, astfel încât să se recomande modelele teoretice cele mai potrivite pentru estimarea conductivității termice echivalente a unui zăcământ de petrol.

În starea ințială, înaintea aplicării unui proces de recuperare termică sau în zone de zăcământ din aval de frontul termic, îndepărtate de acesta, dintre modelele idealizate, este recomandabil modelul Krupiczka, pentru roca saturată cu țiței sau țiței și apă.

Modelul serie este potrivit pentru cazul rocii saturate cu apă.

De menționat că este necesară cunoașterea compoziției și a conductivității termice a fazelor.

Cercetările experimentale au evidențiat modificarea conductivității termice funcție de compoziția mediului poros saturat cu fluide.

Conductivitatea termică echivalentă a mediului poros saturat cu fluide crește când conductivitatea termică a mediului solid și cea a mediului fluid cresc.

Mediul solid al zăcământului de petrol este roca colectoare, iar cel fluid este alcătuit din țiței, apă, gaze.

Conductivitatea termică a acestora depinde de compoziția și de conductivitatea termică a constituenților.

Carotele analizate au fost roci consolidate, iar rezultatele obținute sunt referitoare la matricea solidă deoarece fie așa s-au prezentat inițial, fie în timpul măsurătorilor țițeiul a fost expulzat din porii rocii.

3. Evaluarea relațiilor de variație a temperaturii cu adâncimea

În România s-au efectuat studii privind variația temperaturii cu adâncimea prin estimarea gradienților geotermici.

Datele cele mai apropiate de zăcămintele evaluate în aceasta lucrare sunt date în **Tabel 26 și Tabel 27.**

Nr.	Sonda	Structura			Temp	eratura (°C	C) la adânc	imea de		
crt.	2 on un		1000 m	2000m	3000 m	4000 m	5000 m	6000 m	7000 m	8000 m
1	11	C.A.ROSETTI	31	56	81	106	132	157	182	207
2	6	LACU ROȘU	31	53	76	98	120	142	164	187
20	904	URZICENI	28	40	54	68	81	95	107	121

Tabel 26. Variația temperaturii cu adâncimea

Si	nentru aceste	date	calculate s_s	rensit	scrierea	ecuatiilor	de regresie	(Figure	14)	•
ŞI	pennu acesie	uale	calculate s-a	i icușii	scritta	ccuaținoi	ue regresie i	(Figura)	14)	•

Figura 14. Variația temperaturii cu adâncimea (valori estimate)

Tabel 27. Deuașine de lo	Table 27 . Ecuação de regresie (y este temperatura și x este adalennea sonder)									
	Ecuația de regresie	\mathbb{R}^2	Gradientul geotermic							
			°C/m							
C.A.ROSETTI	y = 0.025x + 6	1,000	0,025							
LACU ROȘU	y = 0,0225x + 8,3333	1,000	0,880							
URZICENI	y = 0.013x + 14.667	0,998	0,545							

Tabel 27. Ecuațiile de regresie (y este temperatura și x este adâncimea sondei)

În urma evaluării profilelor termice și a profilelor geofizice ale sondelor analizate, s-a reușit scrierea ecuațiilor de regresie a variației acestora cu adâncimea.

Pentru analiza structurilor de gaze din zonele analizate în această lucrare, s-au studiat trei foraje și anume:

a. Vernesti-3980 m adâncime,

b. Belciugatele-3313 m adâncime,

c. Suraia-4850 m adâncime.

Pentru fiecare dintre cele trei foraje s-au analizat variația temperaturii și rezistivitatea stratelor.

În **forajul Vernesti** (**Figura 15**) au fost detectate două strate productive în urma analizei carotajului electric.

Dar, ca urmare a perforației stratelor s-au găsit următoarele:

-primul strat între 2460 m și 2470 m, nu prezenta cantități de gaz și țiței,

-al doilea strat a fost perforat intre 3132 m si 3146 m unde s-a constatat un debit de 1,7 m^3 gaze naturale.

Analizând gradientul geotermic și rezistivitatea stratelor geologice se pot observa următoarele:

a. Ecuația gradientului geotermal este:

 $y = 4E^{-18}x^6 - 7E^{-14}x^5 + 5E^{-10}x^4 - 2E^{-06}x^3 + 0.0029x^2 - 2.732x + 1085.9$ (31) unde y este temperatura stratului geologic și x este adâncimea. Rata de eroare este R² =0.9925.

b. Ecuația gradientului geofizic este :

 $z = 4E^{-18}x^6 - 7E^{-14}x^5 + 5E^{-10}x^4 - 2E^{-06}x^3 + 0.0029x^2 - 2.732x + 1085.9$ (32) unde z este rezistivitatea și x este adâncimea.

Rata de eroare este $R^2 = 0.8417$.

Figura 15. Gradientul termic și rezistivitatea stratelor din forajul Vernești

În cazul **forajului de la Belciugatele** s-au efectuat teste de producție în stratele situate la intervalele:

-1100-1118, fără urme de produse petroliere,

-1139-1146, fără urme de produse petroliere,

-1176-1190, fără urme de produse petroliere,

- 1240-1278, fără urme de produse petroliere,

-1530-1558, fără urme de produse petroliere,

-1700-1738, fără urme de produse petroliere,

-1870-1910, fără urme de produse petroliere,

-2160-2210, fără urme de produse petroliere,

-2293-2336, fără urme de produse petroliere,

-2472-2580, fără urme de produse petroliere,

-2720-2740, fără urme de produse petroliere,

- 2834-3359, fără urme de produse petroliere.

Și în acest caz, analizând gradientul geotermal și rezistivitatea stratelor geologice, se pot observa următoarele:

a. Ecuația gradientului geotermal este

 $y = 5E^{-07}x^6 - 5E^{-05}x^5 + 0.002x^4 - 0.0369x^3 + 0.3131x^2 - 0.2178x + 28.586$ (33) unde y este temperatura stratului geologic și x este adâncimea.

Rata de eroare este $R^2 = 0.9992$.

b. Ecuația gradientului geofizic este :

 $z = -1E^{-05}x^{6} + 0.001x^{5} - 0.0183x^{4} - 0.1123x^{3} + 6.183x^{2} - 44.544x + 81.162$ (34) unde z este rezistivitatea și x este adâncimea.

Rata de eroare este $R^2 = 0.7544$.

c. Se observă că gradientul termic nu prezintă variații deci nu există zăcăminte viabile de petrol și gaze.

Figura 16. Gradientul termic și rezistivitatea stratelor din forajul Belciugatele

În cazul *forajului Suraia* au fost analizate mai multe intervale, considerate productive în urma analizei gradientului rezistiv.

Au fost perforate următoarele intervale productive:

-2070-2070, fără urme de produse petroliere,

-2154-2160, fără urme de produse petroliere,

-2234-2274, fără urme de produse petroliere,

- 2588-2598, fără urme de produse petroliere,

- 3505-3510, debit țiței asociat cu gaze, 2 m 3 /h,

-4055-4078, debit țiței asociat cu gaze, 7 m^3/zi .

Și în acest caz, analizând gradientul geotermal și rezistivitatea intervalelor geologice, se pot observa următoarele:

a. Ecuația gradientului geotermal este

 $v = 9E^{-19}x^6 - 2E^{-14}x^5 + 2E^{-10}x^4 - 6E^{-07}x^3 + 0.0013x^2 - 1.3415x + 586.4$ (35)unde y este temperatura intervalului geologic și x este adâncimea.

Rata de eroare este $R^2 = 0.9841$.

b. Ecuația gradientului geofizic este :

$$z = 9E^{-19}x^{6} - 2E^{-14}x^{5} + 2E^{-10}x^{4} - 6E^{-07}x^{3} + 0.0013x^{2} - 1.3415x + 586.4$$
(36)
unde z este rezistivitatea și x este adâncimea.

Rata de eroare este $R^2 = 0.5292$.

Figura 17. Gradientul termic și rezistivitatea stratelor din forajul Suraia

a. Se observă că în zona zăcămintelor de țiței de la adâncimea de 3505-3510, are loc o creștere bruscă a temperaturii datorită creșterii debitului de țiței,

b. În cazul depozitului din intervalul 4055-4078, cresterea temperaturii este redusă datorită debitului redus de 0,29 m³/h.

4. Analiza modelelor de variație a temperaturii cu adâncimea în forajele de explorare a zăcămintelor de țiței și gaze asociate

În timpul forajelor din zonele analizate în lucrare, s-au efectuat testarea termică a intervalelor geologice și testarea geofizică a acestora.

În urma analizei gradienților geofizici (rezistivitatea intervalelor), au fost testate mai multe intervale posibile de titei.

Dar, în cea mai mare parte, aceste măsurători nu au indicat prezența zăcămintelor de țiței și gaze.

Insa analizând gradientul termic, se constată că în zona modificării acestuia există posibilitatea de a identifica prezența zăcămintelor de petrol și gaze.

De asemenea, în urma măsurătorilor de temperatură, am putut scrie o relație de forma:

 $y = A x^{6} - B x^{5} + C x^{4} - D x^{3} + E x^{2} - F x + G,$ (37) unde A, B, C, D, E, F, G sunt coeficienți de strat.

Eroarea este peste 0,999.

In cazul gradientului geofizic (rezistivitate) se poate scrie o ecuație de forma

(38)

 $z = -A x^{6} + B x^{5} - C x^{4} + D x^{3} - E x^{2} + F x - G,$

eroarea relației este foarte mare, anume 0,82-0,52.

În relațiile de mai sus:

- y este temperatura intervalului, °C,

- x este adâncimea intervalului, m,

-z este rezistivitatea intervalului, ohm m,

În concluzie, nu trebuie să fie folosite, pentru determinarea intervalelor productive de petrol și gaze, doar rezistivitățile intervalelor ci și, mai ales, parametrii câmpului geotermal.

Concluzii și direcții viitoare de cercetare

Această lucrare a plecat de la definirea conductivității termice a zăcămintelor de petrol și gaze, proprietate necesară studiului:

a.Tehnicilor necesare creșterii factorului de recuperare a țițeiului și gazelor asociate din zăcămintele de fluide petroliere,

b.Analizelor de creștere a fluidității produselor petroliere vâscoase și congelabile, cantonate în unele zăcăminte din România.

Obiectivul tezei de doctorat l-a reprezentat modelarea parametrilor estimați (conductivitatea termică a rocilor colectoare), în scopul interpretării regimului termic al zonelor cu potențial de depozitare a hidrocarburilor.

S-a analizat regimul termic al zăcămintelor de petrol și gaze din România, fapt care a condus la interpretarea faptului că temperatura formațiunilor geologice crește cu creșterea adâncimii în mod diferit (funcție de zonele cu anomalii termice existente și de constituenții arealului analizat).

De asemenea s-a reiterat încă o dată, în literatura de specialitate (prin articolele publicate), că toate proprietățile fizice ale rocilor sunt dependente într-o măsură mai mare sau mai mică de temperatura de formare, de starea termică actuală a zonei studiate și de istoricul de îngropare/exondare.

Astfel, am observat că putem caracteriza regimul termic al stratelor/intervalelor geologice, funcție de:

-Temperatura formațiunilor geologice și a gradientului geotermic,

-Conductivitatea termică și fluxul geotermic al stratelor geologice.

De asemenea putem afirma că, cunoașterea distribuției câmpului termic în ansamblu, (temperaturi, gradienți geotermici, flux termic), apare necesară atât pentru înțelegerea și fundamentarea modelelor geodinamice moderne cât și pentru scopul practico-economic, al evidențierii, evaluării și valorificării substanțelor minerale utile.

Am analizat și tabelat-centralizat proprietățile termice ale unor roci colectoare funcție de timpul de formare (Terțiar, Cretacic, Jurasic, Triasic, Permian și Carbonifer).

Un subcapitol a analizat conductivitatea termică, proprietate care poate determina metoda optimă de recuperare secundară și terțiară a fluidelor petroliere.

Coeficientul de conductivitate termică variază cu natura corpului, cu starea sa de agregare, cu temperatura și presiunea, cu umiditatea corpului, cu porozitatea, cu natura și concentrația impurităților conținute de corp, etc.

De asemenea au fost studiate modele de calcul teoretic al conductivității zăcămintelor de petrol și gaze.

În concluzie, se poate afirma că modelele teoretice de calcul al coeficientului de conductivitate termică sunt utile în definirea modului de stabilire a tehnicii optime de recuperare terțiară a țițeiului dar, pentru estimarea corectă a cantității de produse petroliere din zăcământ, este necesară determinarea acestei proprietăți (coeficient termodinamic) prin analize de laborator.

Modelul propus în această lucrare pleacă de la ideea de a determina evoluția temperaturii pe o perioadă de mai mulți ani și considerând influența temperaturii exterioare ca fiind neglijabilă.

Problema cuprinde patru variabile independente și anume timpul și trei dimensiuni în spațiu.

În principiu, cele trei dimensiuni spațiale pot fi reduse doar la una radială, plecând de la faptul că există simetrie în ceea ce privește emisiile de radiații radioactive.

Primul pas în elaborarea modelului matematic, pleacă de la secționarea spațiului aferent emisiilor (spațiului geologic) în secțiuni adecvate.

În analiza câmpurilor de temperatură aferente nucleelor radioactive se observă o aplatizare a gradientului termic cu creșterea distanței de emisie.

Vom considera o secțiune tipică n și vom nota temperatura în zona centrală a acestei secțiuni cu T_n .

Ecuația bilanțului termic pentru secțiunea n se poate scrie sub forma:

Viteza de variație a conținutului termic al secțiunii n = fluxul termic de la secțiunea (n-1) plus fluxul termic de la secțiunea (n+1) conform relației:

$$\frac{d}{d\theta}(C\rho V_n T_n) = \frac{(T_{n-1} - T_n)}{\frac{1}{2}(\Delta R_{n-1} + \Delta R_n)} \cdot A_{n-1}k + \frac{(T_{n+1} - T_n)}{\frac{1}{2}(\Delta R_{n+1} + \Delta R_n)} \cdot A_nk$$
(6.10)

unde:

 $-V_n$ reprezintă columul secțiunii n,

-A este aria logaritmică a suprafeței între punctele medii a două secțiuni vecine,

-C reprezintă capacitatea termică a solului,

-k este conductivitatea termică a solului,

 $-\rho$ este densitatea solului.

Există două secțiuni extreme care constituie frontierele domeniului și acestea sunt:

a.Frontiera cavității, care este caracterizată printr-o ecuație de bilanț termic asupra materialului din cavitate:

$$\frac{d}{d\theta}(C_w\rho_w V_0 T_0) = V_0 H - \frac{(T_c - T_1)}{\frac{1}{2}\Delta R_1} \cdot A_0 k$$
(39)

În ecuația aceasta fluxul termic de intrare îl constituie căldura generată de materialul radioactiv și este o informație fundamentală exprimată prin H unități termice generate pe unitate de volum în unitate de timp.

Cealaltă secțiune extremă este amplasată la o distanță suficient de mare de cavitate, ca să respecte ipoteza că, înafara ei, temperatura solului este constantă tot timpul. Ipoteza aceasta se numește ipoteza rezervorului infinit.

În acest context, ecuația ultimei secțiuni N ar fi:

$$\frac{d}{d\theta}(C\rho V_n T_n) = \frac{(T_{n-1} - T_n)}{\frac{1}{2}(\Delta R_n + \Delta R_{n-1})} \cdot A_{n-1}k + \frac{(T_G - T_n)}{\frac{1}{2}(\Delta R_n)} \cdot A_nk$$

$$\tag{40}$$

Unde T_G este temperatura solului la distanța ΔR_n de la T_n .

Prin rezolvarea acestei ecuații se obține temperatura intervalului stratigrafic unde este amplasată sursa de emisie și temperatura în anumite puncte radiale specificate, funcție de timp.

Rezultatele ne permit să stabilim dacă transportul căldurii prin conductivitate și capacitate calorică a solului sunt suficient de ridicate pentru a absorbi căldura generată în stratul de emisie.

Modelul pentru secțiunea n este:

Fluxul termic pentru secțiunea n-1

$$Q_{n-1} = \frac{kA_{n-1}(T_{n-1} - T_n)}{\frac{1}{2}(\Delta R_{n-1} + \Delta R_n)}$$
(41)

$$Q_n = \frac{kA_n(T_n - T_{n+1})}{\frac{1}{2}(\Delta R_n + \Delta R_{n+1})}$$
(42)

$$\frac{d}{d\theta}(C\rho V_n T_n) = Q_{n-1} - Q_n \tag{43}$$

Rezultatele finale ne arată că, în timp, temperatura emisă de sursă se aplatizează fiind constantă și se transmite progresiv în straturile geologice aferente.

Figura 18. Variația temperaturii emisă de o sursă radioactivă (timp-milioane ani)

Au fost analizate modele necesare interpretării parametrilor estimați în scopul determinării regimului termic în zonele cu potențial de hidrocarburi.

Astfel, pentru prima oară în literatura de specialitate, s-a analizat conductivitatea termică a rocilor colectoare, funcție de porozitate și de natura fluidului care saturează porii rocii.

Dacă se acceptă că un zăcământ de petrol este astfel alcătuit încât sunt îndeplinite condițiile privind:

-dispunerea fazelor,

-geometria solidului,

-direcția fluxului termic,

-alte ipoteze, precizate în cadrul fiecărui model,

iar porozitatea și conductivitățile termice ale mediului solid și cel fluid, care alcătuiesc formațiunea, sunt cunoscute, conductivitatea termică echivalentă poate fi determinată aplicând relațiile de calcul corespunzătoare celor opt modele idealizate.

S-a studiat variația acestei proprietăți termice funcție de porozitate și de natura fluidului care saturează porii rocii.

În cazurile analizate, mediul solid s-a considerat a fi argilă și nisip, având conductivitatea termică λ_s =2,1 W/mK.

Porozitatea variază de la 0 la 100%.

Pentru fiecare din cele opt modele idealizate, funcție de natura mediului fluid, având în vedere scopul studiului s-au cercetat patru variante.

S-au luat în calcul:

A) Aerul, aflat la p = 1 atm și $t = 50^{\circ}C$, deci conductivitatea termică a fluidului este

 $\lambda_f = 0.028 \text{ W/mK}$ și saturează 100% porii rocii;

B) Apa, având parametrii de stare p=1atm și $t=50^{\circ}$ C, ceea ce înseamnă o conductivitate termică a fluidului $\lambda_f=0,66$ W/mK, satureză 100% porii rocii;

C) Țițeiul cu ρ_4^{20} =0,946, aflat la 50[°]C, λ_f = 0,12 W/mK, saturează 100% porii rocii;

D) Amestecul de țiței și apă, fiecare având saturația 50%, la temperatura t= 50° C,

 λ_t =0,12 W/mK, λ_a =0,66 W/mK, deci λ_f =0,39 W/mK

Din rezultatele numerice obținute, pentru fiecare din cele patru situații studiate, în cadrul fiecărui model, se observă că:

-în cazul creșterii porozității, conductivitatea termică a zăcământului de fluide petroliere analizat scade. Acest fenomen se datorează scăderii conductivității termice a rocilor sedimentare, comparativ cu conductivitaea fluidelor cantonate în aceste roci.

-probe cu compoziție solidă și porozitate identice au valori diferite ale conductivității termice, funcție de conductivitatea termică a fluidului care saturează porii rocii.

Dintre modelele idealizate, cel mai utilizat este cel al **mediei geometrice ponderate**, care este simplu de aplicat și dă rezultate cuprinse între cele maxime (calculate considerând modelul paralel) și cele minime (corespunzătoare celui serie).

Cunoașterea conductivității termice a rocilor este importantă, pentru:

a. Stabilirea procedeelor de lucru necesare creșterii factorului de recuperare a țițeiului și gazelor din zăcămintele de petrol și gaze asociate,

 b. Identificarea tehnicilor necesare pentru asigurarea unei fluidități a țițeiurilor vâscoase și congelabile,

c. Crearea unei baze de date a proprietăților rocilor, în vederea identificării capacității de extracție sau a volumului zăcământului, funcție de determinările geofizice.

Tocmai de aceea, s-a pus la punct o modalitate de a determina experimental valorile conductivității termice pentru unele carote extrase din zone potențiale de a furniza gaze și condensat.

În urma realizării experimentelor pe carotele extrase din zone potențiale furnizoare de fluide petroliere, s-a reușit determinarea conductivităților rocilor.

De asemenea, s-a determinat porozitatea și densitatea acestora.

Datele obținute le-am utilizat pentru simularea conductivității termice a zăcămintelor saturate cu gaze, apă, țiței pur și țiței în amestec cu 35 % apă.

Totodată am creat și un model propriu de simulare a conductivităților termice, bazat pe interpretarea statistică a datelor obținute în urma calculelor efectuate cu 5 modele analizate.

Modelul dezvoltat în cadrul acestei lucrări pleacă de la ideea că roca analizată nu este pură (s-a introdus în calcul densitatea rocii analizate).

În această lucrare s-a urmărit clarificarea următoarelor aspecte:

a. Modelarea câmpurilor termice,

- b. Estimarea parametrilor regimului termic,
- c. Influența anomaliilor termice asupra rocilor colectoare de petrol,
- d. Analiza răspunsului rocilor la evaluarea gradienților termici și rezistivi.

SUMMARY

Exploitation of crude oil and gas deposits requires knowledge of the physico-chemical properties of the rocks present in the exploitation areas as well as of the fluids that circulate through their pores.

The most useful property of the constituent rocks of oil and gas deposits is thermal conductivity.

This parameter gives us data about:

- Fluid flow rate through rock pores,

-The type of flow that can occur through these pores,

-The optimal exploitation technique, applicable to the extraction of petroleum fluids,

-The possibility of using thermal methods, necessary for secondary and tertiary recovery of crude oil.

At the same time, analyzing the Geological Map of Romania (Figure 1,2,3), the presence of some crude oil deposits located in areas with important geothermal anomalies is observed.

This is the reason why I chosen, as the objective of the doctoral thesis, the modelling of the estimated parameters (thermal conductivity of the reservoir rocks), in order to have an interpretation of the thermal regime of areas with potential for hydrocarbon storage.

The first part of the paper identifies and emphasizes the main data regarding the geothermal phenomenon, its way of manifestation and the link between the geothermal manifestation and the fulfillment of the 5 conditions for the formation of oil and gas deposits: 1) the existence of parent (generative) rocks of hydrocarbs; 2) the possibilities of hydrocarbon migration from the parent rock to the reservoir rock (store); 3) the existence of reservoir rocks, which have the capacity to accumulate hydrocarbons; 4) the existence of protective rocks that determine and protect the closure of oil or gas accumulations within the reservoirs; 5) the existence of a structural (tectonic), stratigraphic or lithological arrangement that maintains liquid or gaseous hydrocarbons in a steady balance.

In the first chapter, the thermal regime of oil and gas deposits in Romania was analyzed, a fact that led to the interpretation of the fact that the temperature of the geological formations increases with increasing depth in a different way (depending on the areas with existing thermal anomalies and the constituents of the analyzed area).

The characterization of the geological areas that present thermal anomalies was carried out and analyzed with the help of the thermal parameters of oil, gas and useful resource deposits, namely thermal conductivity, geothermal flow and geothermal gradient.

Regarding the three thermal properties of the studied deposits, I have presented in the paper the history of research in this field, as well as their estimation techniques, during the geophysical and geological analysis of oil and gas deposits.

Romania has a rich scientific activity in the analysis of thermal fields, from the geological areas where exist oil and gas deposits, but the numerical modeling of these fields was carried out only for didactic purposes, without using complex numerical models, for the interpretation of the properties, necessary for the extraction of valuable mineral substances.

This is precisely why this paper work presents, as a first time in the specialized literature, the relationship between the distribution of the geothermal field and the geophysical response of the analyzed oil and gas deposits.

Also, the analysis of the boreholes carried out in the analysis area of the doctoral thesis (Platforma Moesică), led to the conclusion that the temperature of the geological formations increases proportionally with the depth, the gradient of the temperature field being very

varied (it starts from an increase of 1°C, every 10 m depth, up to 11°C in the case of areas made up of rocks with high thermal conductivity).

At the end of chapter 1, I have presented the distribution of average thermal gradients in Muntenia and Oltenia.

Chapter II analyzes the physical thermodynamic coeficients of the reservoir rocks (volume expansion of the constituent rocks and their thermal compressibility).

Another parameter studied in this paper is the calorific capacity of the deposits.

This property of the deposits is defined as a property constituted by the calorific capacities of the rock as well as of the constituent fluids, namely crude oil, water and gas.

It should be noted that, in the calorific capacity calculation, we must also take into account the porosity of the collecting rocks and the saturations in the constituent fluids (present or not in dynamic circulation).

We analyzed, tabulated and centralized the thermal properties of some reservoir rocks depending on the time of formation (Tertiary, Cretaceous, Jurassic, Triassic, Permian and Carboniferous).

A subchapter analyzed thermal conductivity, a property that can determine the optimal method of secondary and tertiary recovery of petroleum fluids.

Chapter III defines, identifies and classifies geothermal anomalies.

Chapter IV analyzes the geology and geothermal of the oil and gas deposits within the Moesian Platform.

The Moesian Platform, one of the most powerful oil basins, had demonstrated its productive potential around the 1950s, through the discovery of the first field, namely the one from Ciurești.

From that moment, prospecting and exploitation activity was carried out with particular intensity, which allowed the number of oil and gas accumulations to reach over 160.

Hydrocarbon deposits are located in the Devonian, Lower Triassic, Middle Triassic, Upper Triassic, Upper Liassic-Dogger, Malmian, Neocomian, Albian, Senonian, Tortonian, Sarmatian, Meotian, Pontian and in Dacian.

It is a very well-developed stratigraphic interval, which emphasis the fact that, in its evolution, the Moesic Platform benefited, almost all the time, from favorable conditions for the genesis, accumulation and conservation of hydrocarbons.

Analysis of reservoir rocks and source rocks has demonstrated that the genesis of crude oil and associated gases benefited from the influence of geothermal fields (anomalies).

Liquid hydrocarbons are created under conditions of temperatures that can vary, generally between 60° and 140° C.

In the case of values lower than $50^{\circ}-60^{\circ}$ C, the organic matter is still under the predominant influence of biochemical processes, generating practically only light constituents (C1-C4).

Temperatures higher than 120°-140°C cause the decomposition (cracking) of liquid hydrocarbons, resulting in increasingly lighter gaseous fractions. (D. Paraschiv, 1979)

Part II of the paper presents the own contributions of this doctoral thesis, **chapter V**, analyzing models necessary to interpret the estimated parameters, in order to determine the thermal regime in areas with hydrocarbon potential.

Thus, for the first time in the specialized literature on a global level, the thermal conductivity of the collecting rocks was analyzed, depending on the porosity and the nature of the fluid that saturates the pores of the rock.

Chapter VI analyzes the geothermal anomalies in the Moesian Platform and the Moldavian Platform creating equations for modeling the thermal field against geophysical research.

At the end of the paper work, I have presented the conclusions and research directions that emerge as a result of the elaboration of this doctoral thesis.

In this paper work, we have tried to elaborated the following:

a. Modelling of thermal fields,

- b. Estimation of thermal regime parameters,
- c. The influence of thermal anomalies on oil collecting rocks,

d. Analysis of the response of rocks to the evaluation of thermal and resistive gradients.

The doctoral thesis encompasses 6 chapters contained in 165 pages.

Bibliografie

- 1. Airinei, Ș., Geotermia cu aplicații la teritoriul României, Editura Științifică și Enciclopedică, București, 1987
- 2. Albu, M., Energia Geotermică, Editura tehnică, București, 1987
- 3. Albu, M., Termodinamica crustei terestre, Editura Tehnică, București, 1984
- 4. Anastasiu, N., *Diageneza rezervoarelor de hidrocarburi*, Editura Ars, București, 2002, pg.11-200.
- 5. Anastasiu, N., *Standard Source Rocks in The Romanian Petroleum Systems An Overview*, The Publishing House of the Romanian Academy, 2016.
- 6. Babskow, Al., Mălureanu, vol. I.-Geofizică, Ed. IMPRIMEX, Ploiești, 1995, pg.1-120.
- 7. Babskow, Al., Mălureanu, vol II-Geofizică de sondă, Ed. IMPRIMEX, Ploiești, 1995, pg.1-125.
- 8. Baltes, N., Hydrocarbon source rocks in Romania: Annuaire de L'Institut de Géologie et de Géo- physique, 1983, v. 60, p. 265–270.
- 9. Batistatu, M., V., *Analiza cantitativă a bazinelor sedimentare*, Editura Universității Petrol-Gaze, Ploiești, 2000
- 10. Batistatu, M., V, *Oil Traps. Structural and Sedimentary Outlines.* China petroleum University, 2005
- 11. Beardsmore, G.R., Cull, J.P., Crustal Heat Flow-A Guide to Measurement and Modelling, Cambridge University Press, 2001
- 12. Beca, C, Prodan. D., Geologia zăcămintelor de hidrocarburi, Editura Didactică și Pedagogică, București, 1983
- 13. Berbecel O., Stancu M., Agrometeorologie, Editura Ceres, 1970, Cap. III, Clima solului.
- 14. Brănoiu, Gh., *Cristalografie și mineralogie, Îndrumar de lucrări practice*, Editura Universității Petrol-Gaze, Ploiești, 2017.
- 15. Burgher, J., Sourieau, P., Combarnous, M., *Thermal methods of oil recovery*, Technip Editions, 1985, pg. 10-40.
- 16. Cehlarov. A., Frunzescu, D., *Sedimentologie aplicată*, Editura Universității Petrol-Gaze, Ploiești, 2011
- 17. Coroian-Stoicescu, C. *Bazele Managementului*, Editura Universității Petrol-Gaze, Ploiești, 2003, pg.20-70.
- 18. Coroian-Stoicescu, M., Managementul zăcămintelor-Note de curs.
- 19. Costea I., Baltes N., Corelari stratigrafice pe baza microfosilelor, Editura Tehnică, 1962, București,
- 20. Cristea, D., Negulescu, E., R., *Prospecțiune și explorare geofizică, Vol. 1. Metode de investigare pentru hidrocarburi și alte tipuri de resurse*. Editura Vergiliu, București, 2020
- 21. Cristea, D., Negulescu, E. R., *Prospecțiune și explorare geofizică, Vol. 2. Interpretarea geologică a datelor geofizice.* Editura Vergiliu, București, 2021
- 22. Cristian M., Dogaru L., Mocuta St.T., *Considerații asupra regimului termic al sondelor de mare adâncime din R.S. România*, Institutul de Petrol și Gaze, nr. 9, 1971, pg. 522-527,
- 23. Cristescu, T., *Experimental Studies on the Thermal Conductivity of an Oil Reservoir*, Revista de chimie, 2006, vol. **57**, nr. 4, pp. 434-438, Chem. Abs. RCBUAU 57(4), ISSN 0034-7752, București, www.revista de chimie.ro.
- Cristescu, T., Metode de calcul pentru estimarea conductivității termice echivalente a unui mediu poros saturat cu fluide, 2006, Revista de chimie, vol. 57, nr. 1, pp. 96-100, Chem. Abs. RCBUAU 57(1), ISSN 0034-7752, București, www.revista de chimie.ro.
- 25. Cristescu, T., Vasiliu, E.V., Evaluation of the Thermal Resistance of Certain Earth Crust Layers Based on Geophysical Properties Obtained from Laboratory Analysis of

Drilling Samples, Revista de chimie (Bucharest), 2014, Vol **65**, nr. 3, pp. 350-353, Chem.Abs. RCBUAU 65 (3) - 2014, ISSN 0034-7752, București, www.revista de chimie.ro.

- 26. Damian, A., Studiu asupra unor capcane nestructurale din Platforma Moesică, Editura AGIR, București, 2013
- 27. Dahnov V.N., Diakonov D.I., *Termiceskie issledovanie skvajin*, Gostoptehizdat, Moskva, 1952,
- 28. Diakonov D.I., Gheotermia v neftianoi gheologhii, 1958, Gostopthehizdat, Moskva,
- 29. Demetrescu C., Asupra distribuției temperaturii în adâncime în unele unități tectonice din România, St.Cercet.Geol., Geofiz., Geogr., Geofizică, Tom 14, nr.2, 1976, pg. 189-198.
- 30. Demetrescu, C., *Thermal structure of the crust and upper mantle of Romania*. Tectonophysics, 90, 1982, pp.123-135.
- 31. Demetrescu, C. and Polonic, G., *The evolution of the Pannonian Depression* (*Romanian sector*) as derived from subsidence and heat flow data. Tectonophysics, 1989, 164, pp.287-299.
- 32. Demetrescu, C., Veliciu, S., *Heat flow and lithosphere structure in Romania.In:V. Cermak and L. Rybach(Editors), Terrestrial Heat Flow and the Lithosphere Structure.* Springer-Verlag, Berlin, 1991, pp.187-205.
- 33. Demetrescu, C., Ene, M., Andreescu , M., New Heat flow data for the Romanian territory. Ann. Inst. Geol. Geofiz., 1983, 6, pp. 45-57.
- 34. Demetrescu, C., Oancea, V. Andreescu, M., On the thermal and mechanical state of the lithosphere in Romania. 20th IUGG General Assembly, Symp. 1991a, S8: Heat Flow, Rock Mechanics and Seismicity, Venna. IASPEI Program Abstr., pp.144.
- 35. Demetrescu, C., Veliciu, S. and Burst, D.,. *Heat flow map of Romania*. In:E. Hurtig, V.Cermak, R. Hanel and V. Zui (Editors), Geothermal Atlas of Europe. VEB Hermann Haack, Gotha, 1991.
- 36. Dowle W.L., Cobb W.M., *Static formation temperature from well logs*, An empirical method, J.P.T., Nov, 1975, pp. 1326-1330.
- 37. Evans T.R., Coleman N.C., North Sea geothermal gradients, Nature, 247, 1974, pp. 28-30.
- 38. Frunzescu, D., *Geologia României-Îndrumar de laborator*, Editura Universității Petrol-Gaze, Ploiești, 1995.
- 39. Frunzescu, D., *Noțiuni de sedimentologie*, Editura Universității Petrol-Gaze, Ploiești, 2000.
- 40. Frunzescu, D,. *Geologie generală și startigrafică*, Editura Universității Petrol-Gaze, Ploiești, 2002.
- 41. Frunzescu, D., *Geologie de zăcământ*, vol. I și II, Editura Universității Petrol-Gaze, Ploiești, 2003.
- 42. Frunzescu, D., Brănoiu, Gh., *Geologie generală și stratigrafică-Îndrumar de lucrări practice*, Editura Universității Petrol-Gaze, Ploiești, 2004.
- 43. Frunzescu, D, Exploatarea resurselor neconvenționale de hidrocarburi, în perspectiva diferențelor de condiții dintre România (Europa) versus S.U.A.-Studiu de caz: Dobrogea de Sud, Editura Universității Petrol-Gaze, Ploiești, 2018.
- 44. Fertl W.H., Wichmann P.A., *How to determine static BHT from well log data*, World Oil, January, 1977, 105-106.
- 45. Georgescu, O., *Mineralogie, îndrumar de laborator*, Editura Universității Petrol-Gaze, Ploiești, 1985
- 46. Grigoraș, N., Patruț, I., Considerațiuni privind legile de răspândire a zăcămintelor de petrol și gaze din R.P.R., Editura Academiei R.P.R., 1963
- 47. Hall, N.H., Compressibility of reservoir rocks, Trans. AIME, 198, 1953.
- 48. Horne, N., R., Modern Well Test Analysis, 1997, pg.32-196.
- 49. Horne, N., R., *Log Interpretation-Principles/Applications, Schlumberger* Doc., New York, 1998, pg.112-199.

- 50. Heisenberg, W. *Physics and Beyond: Encounters and Conversation*, Harper&Row, New York, 1971. pg.22-194.
- 51. Hilchie D.W., *Maximum temperatures recorded in wellbores*, The Log Analyst, sept-oct. 1968,pp.21-24.
- 52. Ionesi, L., *Geologia unităților de platformă și a Orogenului Nord-Dobrogean*, Editura Tehnică, București, 1994
- 53. Jessop A.M., *Developments in Solid Earth Geophysics*, Chapter 1 Introduction and History, Elsevier, Volume 17, 1990, pp. 1-19, ISSN 0419-0297, ISBN 9780444883094, https://doi.org/10.1016/B978-0-444-88309-4.50005-1,
- 54. Kappelmayer O., Haenel R., Geoexploration, Hannover, 1973.
- 55. Kappelmayer O., Haenel R., *Geothermics whith special reference to application*, Gebruder Borntraeger, Berlin-Stuttgart, 1974, 238 pg.
- 56. Lăzărescu, V., Geologie fizică, Editura tehnică, București, 1980
- 57. Leonăchescu, N., Termotehnica, Editura Didactică și Pedagogică, București, 1974
- 58. Lopatin N.V. Zubairaev S. L., Kos I. M., Emets T. P., Romanov E. A., Malchikhina O. V., Unconventional oil accumulations in the upper jurassic bazhenov black shale formation, west siberian basin: a self-sourced reservoir system, 2003, Journal of Petroleum Geology,

https://doi.org/10.1111/j.1747-5457.2003.tb00027.x.

- 59. Lopatin, N.V. *Temperature and time as factors of coalification*. 1971, Izvestiya Akademii Nauk SSSR, Seriya gelogicheskaya (in Russian), 3, 95-106.,
- 60. Mălureanu, I., *Investigații geofizice ale sondelor de hidrocarburi în timp real, Partea I, metode electrice*, Editura Universității Petrol-Gaze, Ploiești, 2001
- 61. Mălureanu, I., Geofizică de sondă, Editura Universității Petrol-Gaze, Ploiești, 2007
- 62. Makarenko F.A., Poliak B.G., Teploi rejim nedr SSSR, Izd.Nauka, 1970, Mosla, 220 p
- 63. Mitchell A., *Geological Belts, Plate Boundaries, and Mineral Deposits in Myanmar*, Chapter 6 - Granites, Minor Intrusions, and Mineralization in the Slate Belt, Phayaungtaung, and Gaoligong Range,Elsevier, 2018, pp. 155-199, ISBN 9780128033821, https://doi.org/10.1016/B978-0-12-803382-1.00006-7,
- 64. Moldoveanu N., *Metode de determinare a variației temperaturii în sonde și stabilirea repartiției anomaliilor termice în unele șantiere de petrol din RPR*, Proiect de diplomă, Catedra de geofizică, Universitatea București, 1964,
- 65. Mutihac, V., Ionesi, L, Geologia României, Editura Tehnică, 1974
- 66. Neguț, A., *Geofizică de sondă-caiet de lucrări practice*, Universitatea București,1985, pg.1-133.
- 67. Neguț, A., *Estimarea parametrilor ce caracterizează regimul termic al formațiunilor geologice în Muntenia și Oltenia*, Teză de doctorat, Universitatea București, 1982,
- 68. Negoiță V., *Studiul gradientului geotermic în șantierele de petrol din RPR*, Proiect de diplomă, Catedra de geofizică, Universitatea București, 1954,
- 69. Negoiță V., *Etude sur la distribution des temperatures en Roumanie*, Rev.Roum.Geol.Geophys., Geogr.Se.Geophysique, 14(1), 1970, 25-30
- Pawlewicz, M., Total Petroleum Systems of the Carpathian–Balkanian Basin Province of Romania and Bulgaria, 2007, U.S. Geological Survey Bulletin 2204–F, 17 p.
- 71. Paraschiv D., Cristian M., Asupra particularităților regimului geotermic în nord-estul depresiunii Panonice, Petrol și Gaze, 11, 1973, 655-660
- 72. Paraschiv, D., Platforma Moesică și zăcămintele ei de hidrocarburi, Editura Academiei Pepublicii Socialiste România, București, 1979
- 73. Pomârleanu, Vasile, V., *Geotermometria și aplicarea ei la unele minerale din România*, Editura Academiei Republicii Socialiste România, București, 1971
- 74. Răileanu, A., Arhitectura secvențelor depoziționale purtătoare de hidrocarburi ale Jurasicului Platfomei Moesice. Teză de doctorat, Catedra de geologie, Universitatea București, 2002
- 75. Răileanu, A., Popescu, I., Șt., Stan, A., Evolution of the Lower Cretaceouscarbonate sequences and depositional control on hydrocarbon reservoirs, in Central Moesian

Platform, Romania, Conference 29th IAS Meetingof Sedimentology, Scladming, Austria, septembrie, 2012

- 76. Raznjevic, K., *Tabele și diagrame termodinamice*, Editura tehnică, București, 1979, pg.1-300.
- 77. Săndulescu, M., Geotectonica României, Editura Tehnică, București, 1984
- 78. Seghedi, A,. Vida, M, Iordan, M.&Verniers, Jacques, *Paleozoic evolution of the Moesian Platform: An Overview*, Geologica Belgica, January 2005, 8/4:99-120
- 79. Soare, Al., Bratu, C., *Cercetarea hidrodinamică a zăcămintelor de hidrocarburi*, Editura Tehnică, București, 1987, pg.20-125.
- 80. Sonney R., Groundwater flow, heat and mass transport in geothermal systems of a Central Alpine Massif. The cases of Lavey-les-Bains, Saint-Gervais-les-Bains and Val d'Illiez.. Geochemistry. Université de Neuchâtel, 2010, https://tel.archivesouvertes.fr/tel-00923368/file/These-Sonney-2010.pdf,
- 81. Sweeney, J. J. Application of maturation indicators and oil reaction kinetics to put constraints on thermal history models for the Uinta Basin, Utah, U.S.A.**Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48., Editor(s):
 L. MATTAVELLI, L. NOVELLI, Organic Geochemistry In Petroleum Exploration, Pergamon, 1988, Pages 199-205, ISBN 9780080372365, https://doi.org/10.1016/B978-0-08-037236-5.50026-9.
- 82. Ștefănescu D.P. *Contribuții la studiul exploatarii zacamintelor de gaze in regim depletiv*,1994, Teză de docotorat, Universitatea Petrol-Gaze, Ploiesti, pg.20-70,
- 83. Tari, G., Dicea, O, et. al., *Cimmerian and Alpine Stratigraphy and Structural Evolution of the Moesian Platform (Romania/Bulgaria)*-A.A.P.G., Memoir, 1996
- 84. Tari, G., Ciudin, D., Kostner, A., Răileanu, A., Tulucan, A., Văcărescu, G., Vangelov, D., 2011, *Play Types of the Moesian Platform of Romanian and Bulgaria*. AAPG European Region Annual Conference, 27
- 85. Tiliță, M., Sorin, *Evolution of the Transylvanian Basin: interferences from seismic interpretation and numerical modeling* Atomic Dog Publishing, 2001, pg.23-49.
- 86. Tissot, B.P., Welte, D.H., *Petroleum Formation and Occurrence*, 1984, 699 p. Springer-Verlag Berlin- Heidelberg- New York.
- 87. Tissot, B., Durand, B., Espitalié, J. and Combaz, A., *Influence of the Nature and Diagenesis of Organic Matter in Formation of Petroleum*. American Association of Petroleum Geologists, 1974, 58, 499-506. https://doi.org/10.1306/83D91425-16C7-11D7-8645000102C1865D.
- 88. Tyson, R.V., Sedimentary organic matter: organic facies and palynofacies, 1995,
- https://doi.org/10.1007/978-94-011-0739-6, 89. Vasiliu, V.,E., *Geochimia petrolului*-Caiet de lucrări practice, Editura Universității Petrol-Gaze, 1996, Ploiesti, 1996.
- 90. Vasiliu, V.,E., *Geochimia petrolului*-Curs, Editura Universității Petrol-Gaze, Ploiești, 1999
- 91. Waples D.W., *Geochemistry in petroleum exploration*, 1985, DOI https://doi.org/10.1007/978-94-009-5436-6,
- 92. Waples, D W. *Time and temperature in petroleum formation: application of Lopatin's method to petroleum exploration*. 1980, https://www.osti.gov/biblio/6845191-time-temperature-petroleum-formation-application-lopatin-method-petroleum-exploration,
- 93. Waples, D.W; Cunningham, R., Organic geochemistry at DSDP Leg 80 Holes, 1985, PANGAEA, https://doi.org/10.1594/PANGAEA.807923,
- 94. https://ro.wikipedia.org/wiki/Flux_termic,
- 95. https://en.wikipedia.org/wiki/Granite,