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Abstract 

This thesis describes the interaction phenomena between the 

reservoir water and the oil reservoir, viewed as a complex energy 

system. In the first chapter, an introduction to the calculation of 

geological oil reserves and some considerations regarding the future of 

this oil and gas exploitation were presented. Techniques for increasing 

the final oil recovery factor from deposits were also described, 

emphasizing the injection of treated (carbonated) water. At the same 

time, we presented general data on managing water treated with carbon 

dioxide.  

Worldwide energy demand is gradually increasing due to 

anthropogenic activities.  

As per the Key World Energy Statistics (2022), crude oil production 

in developing countries will increase from 40 mb/day (2023) to 50 mb/day 

in 2050. 

In the most ace context, the increase in investments in the oil 

industry is foreseen to be 0.9 trillion USD.  

Natural and fossil fuel sources gradually increased to 31% of oil, 

29% of coal, 21% of natural gases, 10% of waste and biofuel, 54% nuclear, 

2% hydro, and other important energy sources like solar, wind, geothermal, 

and heat until 2013. 

Petroleum energy demand is increasing gradually due to 

transportation development and anthropogenic activities; therefore, gas 

and Oil fields are more important for the country's economic and political 

effectiveness .  

The water flooding method is widely used for secondary oil 

recoveries after the primary oil recoveries from reservoirs.  
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Water flooding is where water is injected into the oil reservoirs 

through water pumping.  

After that, the water is forced out of the Oil into the other reservoir 

sections known as producers.  

Therefore, the produced fluids are progressively increased due to 

water injection.  

In the research result, Craig observed that the admiration of water 

injection is principally outstanding due to its displacement efficiency, 

mobility, availability, and ease of injection [3]. 

In addition to the water flooding processes, it becomes inefficient to 

endure these procedures since the cost of eliminating and disposing water 

surpasses the net income produced by oil production.  

Oil recoveries are the primary concern to engineers, as they are used 

to recover secondary Oil from different oil reserves that are flooded by 

water.  

 

 

 

 

 

 

 

 

 

 

 

Fig.1.World Energy Consumption by fuel type (IEA: World Energy 

Outlook, 2006) 
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Fig.1. Oil, natural gas and coal demand in the Stated Policies Scenario in 

World Energy Outlook 2021, 2020 and 2016. (Source: World Energy 

outlook, 2021, Available website: 

https://iea.blob.core.windows.net/assets/4ed140c1-c3f3-4fd9-acae-

789a4e14a23c/WorldEnergyOutlook2021.pdf)  

 

The main concern about the process is the high rate of oil recoveries 

using low water production. The water drive capacity maintains the oil 

withdrawal rate in addition to the level of the reservoir pressure.  

The carbonate water injection is the most essential injection process, and 

less CO2 is used to continue the CO2 injection. Therefore, CO2 access 

increased attractively in offshore reservoirs due to the limitation. The CO2 

storage by the carbonate water injection or the CWI removes the buoyancy-

driven leakage risk different from the injection of the CO2 gas stage .  

CW or carbonated water is thicker than the water at altered 

circumstances. For the illustration, at 305 psi (2.1 MPa) and 69.8 °F (21°C), 

https://iea.blob.core.windows.net/assets/4ed140c1-c3f3-4fd9-acae-789a4e14a23c/WorldEnergyOutlook2021.pdf
https://iea.blob.core.windows.net/assets/4ed140c1-c3f3-4fd9-acae-789a4e14a23c/WorldEnergyOutlook2021.pdf


5 

 

the 𝜌𝐶𝑊 = 1003.4 kg/ m3 (62.7 lbm/ft3) vs. 𝜌𝑤𝑎𝑡𝑒𝑟 = 998.0 kg/ m3 (62.30 

lbm/ft3) are located. On the surroundings of reservoir 4,500 psi (31 MPa) 

and (185 °F (85°C), where thickness vicissitudes to 𝜌𝑊 = 968.6 kg/ m3 

(60.47 lbm/ft3) and 𝜌𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟 = 994.3 kg/ m3 (62.1 lbm/ft3) vs. 𝜌𝐶𝑊 = 1.0152 

kg/m3 (63.34 lbm/ft3). The CWI technique is also more advantageous in 

dense oil/gas reservoirs. Due to the unchanging anterior association, it can 

relocate most reservoirs where oil/gas storage is located. The higher CO2 

solubility in the water permits high CO2-augmented water at lower 

pressures and temperatures. Due to the CO2 higher solubility in the oil/gas 

than in water together by the micro-model circumstances where core 

flooding circumstances (0.076 g CO2/g oil vs. 0.046 g CO2/g seawater) and 

(0.096 mol CO2/mol oil vs. 0.0124 mol CO2 /mol deionized water), melted 

CO2 in the water can transmission since the water to oil/gas and progress 

in the oil recovery process. Moreover, the carbonate water injection or the 

CWI must be used for water-flooded reservoirs like tertiary recovery. 

Offshore Eastern Canada consumes high permeability and appropriate light 

oil reservoirs. The EOR procedures in the offshore reservoirs are more 

stimulating. Notwithstanding the current price recession, the ultimatum for 

oil continues and is predicted to intensify in the subsequent centuries. 

Significantly, oil drilling and examination endure rapidly as present 

substitute sources of energy are incapable of completely substituting fossil 

fuels. Newfoundland’s oil/gas manufacturing industrial areas are grounded 

on offshore grounds.  The Boring offshore bores are more exclusive than 

the onshore bores (https://www.iea.org/). Consequently, it is more 

significant that the oil/gas recovery is enhanced oil recovery (EOR), and 

exploited approaches must be helped. The research further exhibited the 

predicting of the future production rate of 50 oil wells using decline curve 

https://www.iea.org/
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analysis (DCA) and reservoir simulation. In addition, 50 oil wells in Zubair 

field were used as the case study. Based on past production history, 

standard curves were generated using exponential, exponential, hyperbolic 

and harmonic decline model equations from which comparative study of 

production decline rate trend analysis was carried out. The model equations 

were used to project future oil productions for a period of 30 years. Finally, 

the history match was performed to evaluate the production behavior of 

Zubair field. 

 

In Chapter 2, we reviewed the research to increase the recovery 

factor, emphasizing the impact of water injection into the deposit. At 

the same time, we described the numerical models applicable to the 

management of the injection of this waste resulting from crude oil 

extraction. To understand the behavior of carbonated water, I described 

the behavior of CO2 and reservoir water from the point of view of the 

development phases (liquid, gas, solid). The third chapter is dedicated 

to research carried out in the laboratory to determine the behavior of the 

analyzed deposits. Thus, we statistically analyzed the physical 

properties of the cores and the liquids contained in them, harvested due 

to the exploitation of the Mishrif reservoir deposit. I mention that the 

cores were collected from 2012 to 2015, years that consisted of multiple 

field engineering activities. The data was subsequently processed 

between 2016 and 2022, a quite large time period due to the multitude 

of correlations established between various parameters of the field 

analyzed.  

Researchers concluded that the vital oil trapping mechanism was 

Wettability trapping, which is outstanding in the oil-wet environment of 

the micro-model.  
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The bypassing pores and snap-off were likewise experimental.  

The recovery rate of oil at breakthrough was described as 70.4% of 

the original oil-in-place (OOIP), 8.1% more than the water flooding 

salvage influence at breakthrough.  

The ultimate factor of the recovery of 91.1% in secondary CWI was 

associated with 81.7% in the water flooding.  

The carbonated water transformed the Wettability of the oil-wet or 

mixed-wet micro-model to water-wet.  

The CWI was efficaciously used to recuperate oil for a lengthier 

historical part.  

A few researchers also explored the oil recovery and carbon storage 

characteristics of the CWI in a sequence of the core flooding 

experimentations by oil with 13.7 MPa (2,000 psi) and 28 °API at 40°C 

(104 °F) [152].  

The carbonated rock illustration showed a middling permeability and 

porosity of 11.6 mD and 24%, respectively.  

The research outcomes were presented as 31.5% and 19.7% recovery 

of oil at 1 PV, and 40.5% and 56.7% oil recovery subsequently 7 PV 

injection throughout the secondary CWI and the tertiary CWI associated 

with the conforming water flooding.  

However, the storage of the CO2 measurements for together 

secondary and tertiary CWI arrangements were virtually identical.The 

secondary CWI resulted in a 16.2% supplementary oil recovery associated 

with the tertiary CWI water flooding.  

Some researchers have accompanied a sequence of the multiple-

communication examinations in the micro-model (this micromodel was 

used by [45] and the slim-tube (the permeability of 6 D and the porosity of 

30%) at 38°C (100 °F) and 17.2 MPa (2,500 psia) by the seawater (salinity 
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of 54,540 ppm) and synthetic live oil (20.9 °API) to comprehend the 

communication among carbonated water and oil.  

The CO2 solubility in seawater was intended to be 0.014 mol CO2/mol 

water. The oil was transported into communication through carbonated 

water or CW in the PVT cell.  

The compositional investigation of every communication historical 

phase was presented that the novel gas stage was molded. In the initial 

phase, the novel stage was collected of the CO2 and CH4. owever, as 

additional communication between CW and oil remained complete, the 

novel stage was wealthier in the CO2.  

The researchers also achieved the slim-tube experimentation to 

impersonate the CW-live oil stage dislodgment and performance in the 

porous media.  

The water innovation in the CWI happened at 0.31 PV through a 

recovery factor of 32.8%, associated with a revolution in the water flooding 

at 0.29 PV through a recovery factor of 26.2%.  

The recovery factor at 1 PV was described to be 42% and 54% for the 

secondary CWI and water flooding, respectively.  

The results of the slim-tube examination presented that the CWI led 

to a supplementary oil recovery of 24.0%, accompanying the water 

flooding at 5 PV (eventual recovery factor for the secondary CWI ~ 93%).  

Development of the novel stage amended the oil recovery complete 

recombination of the oil displacement and trapped oil, producing a 

sympathetic three-phase movement district through less outstanding oil 

saturation, restricting the movement track of the CW and diverting it near 

un-swept parts of the porous medium. In this research work, the 

consequences of olive oil are measured and revealed to disturb the 

compositional performance of the carbonated water and the oil
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Chapter 4 looks at the management of water injection in a given field. 

Chapter 5 describes the physico-chemical phenomena that occur during the 

injection of carbonated water for the M35 deposit. Chapter 6 also analyzes the 

energetic effects on the Mishrif field due to replenishing the amount of water 

required to increase the recovery factor.  

The present thesis ends with Chapter 7 exhibited the predicting of the 

future production rate of 50 oil wells using decline curve analysis (DCA) and 

reservoir simulation. In addition, a 50 oil wells in Zubair field were used as 

the case study. Based on past production history, standard curves were 

generated using exponential, exponential, hyperbolic and harmonic decline 

model equations from which comparative study of production decline rate 

trend analysis was carried out. The model equations were used to project 

future oil productions for a period of 30 years. Finally, the history match was 

performed to evaluate the production behavior of Zubair field. 

 

The OFM forecast (DCA) simulation current broad range of time series 

and forecasting capabilities enables users to model, forecast, and simulate 

processes for improved field redevelopment strategies and well management. 

Users can model complex scenarios and analyze the dynamic impact-specific 

events might have on the lifespan and production of an asset, be that a field or an 

individual well.  

The OFM forecast simulation provides statistical tools that include the 

ability to automate the DCA process by working backwards through the data. 

And this allows us to compute declines and production forecasts form every 

producing well in the database. 

The following conclusions are made on the basis of this study: 

• The study uses the historical production data that collected from day one of 

the starting of production, until 31 December 2017.   
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• OFM forecast & decline curve analysis through production histories of oil 

and gas wells can be analyzed to estimate reserves and future oil and gas 

production rates. Because accurate production data are commonly available 

on most wells, production data analyses can be widely applied. 

• Using OFM simulation software for the decline curve analysis allow a 

verification result of prediction of production performance for Zubair field 

wells. And the study uses the historical deterioration in production; the 

exponential decline method has been used to gain best results.  

• The OFM forecasting results are achieved considering the next 30 years and 

it will continue for many years. 

• The Expected Ultimate Recovery (EUR), calculated by OFM Decline curve 

analysis by the end of Year 2047 for Zubair field given 2,439,500 MSTB 

for Proven Reserves. 

• The benefit from OFM forecast & decline curve analysis (DCA) is to figure 

out the future production, that’s to optimize and develop the field before it 

reaches the abandonment point. 

 

Recommendations 

This study focuses on the future prediction of 50 oil wells of Zubair field 

with considering the economic side, but without cost data, so it's recommended 

that incase a new study made, economic with cost data can be taken into 

consideration.  

1. I recommended to use OFM simulation software, cause it’s preferable to 

be applied for the naturally produced oil & gas wells, to achieve best and 

accurate results of decline curve analysis (DCA) technique, the reservoir 

must be put into production of natural energy drive without any 

intervention by further recovery methods.   



 

11 

 

2. When there are some wells producing naturally the right discussion is to 

keep them run naturally instead of installing down hole pumps (ESP).  

3. It's recommended to conduct an EOR process in association with decline 

curve analysis (DCA) to give more hands so such problem. 
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